CARACTERÍSTICAS TÉRMICAS DE MATERIAIS DE CONSTRUÇÃO USADOS NO RIO DE JANEIRO

O. D. Corbella
C. R. Stangenhaus
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Professor José Henrique Vilhena
Rector

Professor Antonio MacDowell de Figueiredo
Sub-Rector para Graduados e Pesquisa

Professor Carlos Tanus
Decano do Centro de Letras e Artes

FACULDADE DE ARQUITETURA E URBANISMO

Professora Maria Angela Dias
Dirigente

Professor Mauro Santos
Coordinador Adjunto de Pós-Graduação e Pesquisa

PROARQ - PROGRAMA DE PÓS-GRADUAÇÃO EM ARQUITETURA

Professor Vicente del Rio
Coordenador

CONSELHO EDITORIAL

Professor Vicente del Rio
Coordenação Editorial

Professores Mauro Santos, Jules Slama, Luiz Manciel Gazzaneo e Rosina T. Ribeiro
Coordenadores das Áreas de Concentração

Luiz Alberto Teixeira Filho
Produção Gráfica

Cadernos do PROARQ

Veículo para a divulgação da produção de seus docentes, discentes e pesquisadores, assim como de eventos especiais, como contribuição ao debate e o desenvolvimento no campo da Arquitetura em geral.

Reprodução proibida sem o consentimento expresso do PROARQ ou dos autores.

Julho 1999

ProArq - Programa de Pós-Graduação em Arquitetura
Faculdade de Arquitetura e Urbanismo, Sala 433
Universidade Federal do Rio de Janeiro
Cidade Universitária, Ilha do Fundão
Rio de Janeiro, RJ – CEP 21941-590
tel: (021) 290-2112, c. 2745 e 2746
telefax: (021) 290-2112, c. 2737
e-mail: proarq@proarq.ufrj.br
http://www.fau.ufrj.br/proarq
CARACTERÍSTICAS TÉRMICAS DE MATERIAIS DE CONSTRUÇÃO USADOS NO RIO DE JANEIRO
Oscar Daniel Corbela & Carmen Ruth Stangenhaua

1. Introdução ... 1
2. O Clima da Cidade do Rio de Janeiro 3
3. Conforto Térmico .. 7
4. Materiais de Construção Mais Usuais no Rio de Janeiro 9
5. Definições dos Parâmetros Térmicos Utilizados 11
6. Propriedades Térmicas dos Materiais 13
 6.1. Tabela de Propriedades Térmicas de Materiais 15
 6.2. Tabela de Propriedades Óticas de Superfícies 23
 6.3. Tabela de Coeficientes para Cálculos Térmicos de Elementos Construtivos e/ou para determinação do Conforto Térmico .. 25
7. Tabelas de Desempenho Térmico de Conjuntos de Materiais 27
8. Conclusões e Recomendações ... 49
Apêndice 1. Caracterização Climática da Cidade do Rio de Janeiro 51
Apêndice 2. Símbolos, Unidades, Equivalências e Tabelas Auxiliares 67
Apêndice 3. Referências Bibliográficas dos Dados Apresentados 73
Apêndice 4. Bibliografia Recomendada sobre o Tema 77
Corbella, Oscar Daniel.

65p.: il.; 30cm. (Cadernos do PROARQ; 6)

CDD 720
PREFÁCIO

O presente trabalho é o resultado de uma pesquisa sobre materiais de construção usados em nosso meio, desenvolvida com recursos da FAPERJ - Fundação de Apoio à Pesquisa do Estado de Rio de Janeiro. O apoio foi realizado por meio de um Convênio entre a FAPERJ e a UFRJ - Universidade Federal do Rio de Janeiro, através da FAU - Faculdade de Arquitetura e Urbanismo, e do seu DTC - Departamento de Tecnologia da Construção. Os autores, o Prof. Dr. Oscar D Corbella, responsável pelo Projeto, lotado no DTC/FAU/UFRJ, e a Arq Carmen Stangenhaus, Mestre em Arquitetura, formada no Curso de Pós-Graduação em Arquitetura da FAU/UFRJ, contaram com a colaboração (durante diversos períodos) dos estudantes Suzana Vieira, Erika Barroso, Marco André Mattos de Araújo, da FAU, e Márcio Cataldi, do Departamento de Meteorologia do Instituto de Geociências, da UFRJ, alunos com Bolsas de Iniciação Científica, concedida pela UFRJ através do convênio com o CNPq - Conselho Nacional de Desenvolvimento Científico e Técnico. Os autores desejam fazer constar seu agradecimento a todas as pessoas e instituições envolvidas no apoio ao desenvolvimento desta pesquisa, em particular, ao Sr. Armando de Sá Tavares, do Departamento de Climatologia, do INMET - Instituto Nacional de Meteorologia, e aos Prof. Maria Amália A. Magalhães e Valmor Prudencio, do DTC/FAU/UFRJ, à Dra. Maria Akutsu do IPT - Instituto de Pesquisas Tecnológicas, do Estado de São Paulo, ao Prof. John Martin Evans, da FADU - Faculdade de Arquitetura, Diseño y Urbanismo da UBA - Universidad de Buenos Aires, de Argentina e à Prof. Lucy Pinto Hack, do Departamento de Geografia da PUC - Pontificia Universidade Católica - RJ.
1. INTRODUÇÃO

A Arquitetura Bioclimática, que se preocupa com a adequação da construção ao clima visando o conforto térmico, acústico e visual do usuário, vê o ambiente construído como uma membrana reguladora (permeável e controlada) entre o clima externo e ambiente interno.

Essa "membrana" é utilizada para conseguir um ambiente interno confortável, com o mínimo uso de energia convencional, contribuindo assim para poupar energia, evitar o desperdício de recursos naturais e prevenir a poluição resultante da geração e o uso da energia convencional.

Para conseguir habitações confortáveis, o arquiteto deve ser capaz de regular as variáveis climáticas externas (temperatura, radiação solar, umidade e ventos) através de recursos de projeto e o uso de materiais convenientemente escolhidos. É necessário portanto que o arquiteto conheça o comportamento dos materiais do ponto de vista térmico, luminoso e acústico, para poder construir a habitação como uma "membrana" eficiente.

Esta publicação reúne informação relativa ao aspecto térmico. Sabe-se que os diversos materiais têm propriedades físicas diferentes, podendo ser mais ou menos adequados para intervenir na modificação do clima externo para o ambiente interno. Portanto, os conjuntos de materiais que formarão os limites físicos da construção se comportarão de maneira diferente da simples soma do seus componentes, e seus desempenhos vão depender da habilidade da escolha. Por esse motivo, além das características dos materiais isoladamente, se apresentam as características térmicas dos conjuntos mais representativos de paredes e tetos encontrados em nossa cidade e arredores.

Por outro lado, como a qualidade das características térmicas deve ser julgada dentro de um panorama climático, na segunda seção, se inclui uma visão geral do clima da cidade do Rio de Janeiro, tomado como referência para este estudo.

Para uma melhor compreensão do tema, na terceira seção se revisam os conceitos de Conforto Ambiental, em particular o Conforto Térmico, na quarta se apresenta uma visão geral dos materiais de construção mais usados no meio e, para completar, na quinta seção, são lembradas as definições dos parâmetros térmicos que serão apresentados nas seções a seguir.

Na sexta seção se encontra a listagem de Propriedades Técnicas dos Materiais, e na seção seguinte Propriedades Técnicas de Conjuntos de Materiais, sendo a oitava seção dedicada às Conclusões e Recomendações.

Nos apêndices aparecem tabelas auxiliares, esclarecimentos e bibliografia.
2. O CLIMA DA CIDADE DE RIO DE JANEIRO

A cidade do Rio de Janeiro está situada a 22°54' de latitude sul e 43°10' de longitude oeste, e é banhada pelo Oceano Atlântico caracterizando-se como litorânea.

Sofre o domínio do Anticiclone Tropical do Atlântico, que atua com mais intensidade no inverno e com ventos de nordeste à noite durante o verão. A baixa (pressão) do Chaco que fica geralmente localizada sobre o Pantanal Mato-grossense pode estender sua influência até a cidade do Rio de Janeiro causando calmarias ou correntes de noroeste durante o verão. Além destes fatores climáticos, a cidade do Rio de Janeiro, devido a sua proximidade com o Oceano Atlântico, é afetada pelas brisas que sopram à tarde provenientes do continente e pela noite vindas do mar, e com maior intensidade durante o verão.

O relevo e a urbanização influenciam no clima da cidade, sendo o relevo caracterizado por dois domínios fisiográficos: o trecho montanhoso representado pelos maciços litorâneos e as zonas de amplas baixadas com denominações locais. Estes Maciços variam em média de 200m (zona sul) até 400m (zona norte) de altitude. Pode-se ter uma noção das variações climatológicas destas regiões utilizando o quociente térmico vertical que aponta uma redução no valor da temperatura de 0,6°C para cada 100m de altitude. Sabe-se ainda, que as encostas voltadas para o oceano são mais frescas e úmidas e as continentais por sua vez mais quentes e secas, como é o caso do Maciço da Tijuca. Porém, a umidade se mantém alta durante o ano todo.

A crescente urbanização pode ter sua influência sentida comparando as informações das "Normais Climatológicas" dos períodos de 1901 à 1930 e de 1961 à 1990, onde os dados desta última apresentam valores comparativos das temperaturas média, máxima e mínima superiores à da primeira em até 1°C, o que tratando-se de médias, representa um valor muito expressivo. Infelizmente, essas variações climáticas, devidas a vários fatores, entre eles o crescimento urbano e a modificação da cobertura da camada vegetal natural que cobria estas regiões, não podem ser avaliadas devidamente em uma análise mais detalhada da cidade do Rio de Janeiro, devido a extinção da maior parte das estações meteorológicas do município.

Mesmo com esta dificuldade, pode ser feita a distinção do clima da cidade do Rio de Janeiro, baseando-se nos dados das normais climatológicas existentes e na divisão geográfica e climatológica do município. No mapa na página seguinte estão localizadas as estações meteorológicas onde foram medidos os dados apresentados neste trabalho. No Apêndice I, se apresentam gráficos e tabelas de dados de temperatura para 11 zonas, de umidade para 4 delas, de ventos diários para 3 zonas e gerais para a radiação solar. Lamentavelmente, dados separando ventos diurnos dos noturnos, mais necessários para o projeto arquitetônico bioclimático, existem somente para duas zonas, e os dados disponíveis não estão suficientemente trabalhados, necessitando um estudo mais aprofundado. Os dados de radiação solar e horas de sol existem para uma única estação.

Estes dados configuram o conjunto mais completo de informações que foi fornecido aos autores, e constituem uma base para a tomada de decisões, para prever um desempenho térmico correto de um projeto arquitetônico bioclimático.
Mapa topográfico da cidade do Rio de Janeiro e suas respectivas estações meteorológicas (desativadas e atuais)
3. CONFORTO TÉRMICO

Atingir conforto térmico é uma das metas de um bom projeto arquitetônico. Quer-se lembrar aqui esse conceito.

Os seres humanos produzem constantemente energia térmica a partir da energia adquirida pela alimentação (Metabolismo*). Essa energia necessita ser liberada de forma a manter a temperatura superficial da pele em torno dos 34°C. O balanço desta energia é regido pela lei:

\[M - W - T = A \]

onde
- \(M \) = produção de energia térmica pelo metabolismo
- \(W \) = energia gasta com o trabalho físico
- \(T \) = trocas de calor com o ambiente
- \(A \) = energia térmica acumulada no corpo

O termo correspondente às trocas de calor pode ser escrito:

\[T = \text{Cond} + \text{Conv} + \text{Rad} + \text{Evap} \]

onde
- \(\text{Cond} \) = ganhos ou perdas de calor por condução para as superfícies em contato com o corpo
- \(\text{Conv} \) = ganhos ou perdas de calor por convecção para o ar em torno do corpo
- \(\text{Rad} \) = ganhos de calor pela absorção de radiação solar e/ou radiação infravermelha provinda das superfícies vizinhas, ou perdas, por emissão de radiação infravermelha para as superfícies vizinhas
- \(\text{Evap} \) = perdas de calor latente por evaporação da perspiração, respiração ou suor

O sexo e a idade determinarão \(M \), o tipo de atividade modificará \(M \) e \(W \), o tipo de roupa e sapatos modificarão os termos “Cond”, “Conv”, “Rad” e “Evap” (Veja-se valores tabelados no Apêndice 2).

Para que uma pessoa se encontre em conforto térmico, “A” deve ser aproximadamente zero. Neste caso, a superfície da pele se mantém naturalmente em torno dos 34°C. Se A se mantiver diferente de zero durante algum tempo, a pessoa sentirá calor ou frio.

As perdas ou ganhos de calor no corpo, globalizados em “T”, dependerão:
- da temperatura do ar do ambiente,
- da temperatura das superfícies do ambiente,
- da exposição, ou não, à radiação solar direta,
- da umidade relativa e
- do movimento do ar.

(*)Metabolismo: Engloba os complexos processos físicos e químicos que acontecem dentro de um organismo vivo, necessários para a continuação da vida. No processo algumas substâncias são rompidas para dar energia aos processos vitais enquanto outras substâncias, necessárias para a vida, são sintetizadas.
Em nosso clima, a exposição à radiação solar será quase sempre desconfortável, mesmo nos períodos de inverno. Quando a temperatura do ar e das superfícies que rodeiam uma pessoa forem inferiores à da pele, esta perderá calor e sentirá frio. Começarão então a atuar mecanismos no sentido de diminuir essa perda (os poros se fecham, a circulação superficial de sangue diminui, as pessoas se cobrem com mais roupa, para aumentar o isolamento, e fecham as janelas para interromper as correntes de ar).

Quando a temperatura, a umidade, a circulação do ar e a exposição à radiação solar e a das paredes que rodeiam a pessoa, forem tais que a pele dissipe a quantidade de energia térmica que o corpo precisa perder (correspondendo a A = 0 na primeira equação), a pessoa não sentirá calor nem frio, situação que descrevemos como sendo de conforto térmico.

Mas se as temperaturas do ar e das superfícies envolventes forem maiores que a da pele, a pessoa ganhará calor por condução, convecção e radiação, e só poderá perdê-lo por evaporação, e isto, se a umidade relativa for favorável (a umidade relativa não deveria ser inferior a 30% nem superior aos 90%). A renovação do ar e a ventilação, favorecerão o processo de evaporação da camada d'água sobre a pele, facilitando a situação de conforto térmico.

O projeto arquitetônico bioclimático trabalha com a forma do edifício, seu posicionamento no terreno com relação ao Sol e aos ventos, com proteção solar, cores e disposição de superfícies, e propriedades térmicas dos materiais de construção (escopo de este trabalho), com a disposição de vegetação em torno do edifício, com espelhos d'água e chafarizes, avaliando o período e tipo de utilização do edifício, determinando áreas de aberturas, correntes cruzadas, ventilação seletiva, procurando adequar o edifício ao clima local, para conseguir conforto térmico para as pessoas que utilizarão esse edifício.

O projeto arquitetônico bioclimático não dispensa o uso de ar condicionado, quando for necessário pelo tipo de atividade e período de ocupação, e o orçamento da construção o permitir. Nestes casos, consegue que a potência do sistema seja reduzida, poupando investimento, e que o gasto de energia elétrica seja minimizado, diminuindo o custo da gestão do edifício, sem sacrificar o conforto térmico para os usuários.

No apêndice 4 se apresentam referências bibliográficas recomendadas tanto para o início do estudo do tema, quanto para um aprofundamento do seu conhecimento.
4. MATERIAIS DE CONSTRUÇÃO MAIS USUAIS NO RIO DE JANEIRO

Um levantamento dos elementos habitualmente usados para a construção de paredes e tetos em nosso meio, levou a relação que se discute nesta Seção, na qual também são apresentadas suas características mais relevantes:

4.1. Blocos cerâmicos (Tijolos de barro). Entre os materiais utilizados na construção civil no Município de Rio de Janeiro, a maior parte, estimada em torno de 80%, é constituída por tijolos cerâmicos e blocos de concreto. Os tijolos, blocos de barro cozido, são ainda o material de construção mais utilizado na região; maciços ou vazados, os tijolos do Rio de Janeiro são produzidos em equipamentos muitas vezes desenvolvido na própria oficina, em grande parte artesanal, razão pela qual diferem ligeiramente entre si. Existem algumas produções mais sofisticadas, tijolos de melhor acabamento e encaixes; seu desempenho térmico pode ser inferido dos resultados na Seção 7, que correspondem aos blocos cerâmicos mais usuais, de 10 x 20 x 20 cm, com furos quadrados, já incluindo a argamassa de vedação.

4.2. Adobes. Confeccionados com solos que apresentem em torno de 50% de argila e não menos que 25% de areia, os adobes se distinguem dos tijolos por não serem queimados. São estabilizados de forma mecânica ou através da adição de um material estabilizador e representam uma opção viável para construir em locais onde haja matéria prima farta como áreas rurais e periferia das áreas urbanas. Seu desempenho é bom desde que os blocos sejam assentados corretamente e devidamente protegidos contra a umidade.

4.3. Solocimento. É também uma tecnologia do uso de terra. Os solos ideais devem possuir teor de areia entre 50 e 90% que são, neste caso, misturados com cimento e água. O solocimento permite a confecção de paredes monolíticas, tijolos e blocos, que são sempre compactados em formas adequadas à tarefa que se deseja executar. Não necessita acabamento, apenas impermeabilização.

4.4. Concreto

4.4.1. Blocos de concreto. Como os tijolos, eles podem ter vários formatos e medidas e podem também ser usados com fins estruturais ou de vedação. Para fins de uso das simulações do desempenho térmico quando integrados em paredes (Veja Seção 7), foram considerados blocos vazados, incluindo a argamassa.

4.4.2. Concreto armado. O concreto é um material extremadamente versátil e adequado para a construção de estruturas, lajes, paredes portantes e painéis premoldados. Seu desempenho foi estudado à partir de painéis premoldados, (cuja espessura é proporcional ao tamanho das peças fabricadas), e escolhendo-se como mais significativos:

a) Painéis portantes: prefabricados ou moldados em formas "túnel" tem espessuras em torno de 10 a 12 cm e desempenho adequado em prédios próximos de dez andares.
b) Painéis de vedação: menores, utilizados entre elementos portantes, têm espessuras variando em torno de 6 cm.

4.4.3. Concretos leves. São concretos com massa específica inferior a 1800 kg/m³. Se dividem em dois grandes grupos.
a) Concretos com agregados leves, onde o agregado tradicional é substituído por agregados leves, por exemplo, argila expandida ou poliestireno expandido (isopor), modificando suas características, inclusive as térmicas.
b) Concretos celulares, concretos leves, autoclavados, fabricados a partir de uma mistura de cimento, cal, areia e pó de alumínio, formando um produto de elevada porosidade, leve e resistente. Apresentam uma gama variada de blocos e painéis autoportantes que podem ser combinados em diversos sistemas modulados. Com um acabamento liso e uniforme, o revestimento é necessário apenas para sua proteção.

4.5. Tecnologia mista (Prefabricados de concreto e tijolos cerâmicos vazados). Englobam-se aqui elementos construtivos combinando concreto e tijolos cerâmicos vazados, compostos por elementos prefabricados, ou constituindo painéis para a execução de paredes e pisos.

4.6. Argamassa armada. É produzida com cimento, areia e tela de aço, formando painéis modulados com pequena espessura (aproximadamente 2,5 cm). Para melhorar seu desempenho térmico, os painéis utilizados para paredes externas podem ser duplos, separados entre si por uma camada de ar (de 5 cm de espessura), tendo aberturas na parte inferior e superior para permitir a circulação do ar.

4.7. Painéis “sandwiche”. Recebem este nome os painéis compostos por um material externo resistente, revestindo um material interno ou miolo. Foram estudados painéis compostos de duas faces de fibrocimento com miolo de madeira, que são encontrados no mercado em forma de placas padronizadas de 40 e 55 mm de espessura.

4.8. Madeira. Entre os diversos sistemas construtivos foram selecionados dois:
a) Tábuas horizontais com 2 cm de espessura, em pinho, como as usadas em barracos de obra, e
b) painéis duplos de pequena espessura, usados para a construção de casas.

4.9 Plásticos alveolares. São materiais de baixa massa específica e baixa condutividade térmica, portanto materiais isolantes. São comercializados sob a forma de placas utilizadas para isolamento de telhados, lajes de coberturas e paredes. Dividem-se em dois grandes grupos:
a) Poliestireno extrudado, (comercializados sob a forma de placas de espuma rígida, fabricadas por um processo de extrusão contínua cujo resultado é uma estrutura celular fechada e impermeável)
b) Poliestireno expandido (conhecido como isopor - apresentado também sob a forma de pérolas ou blocos). Inclui-se nas simulações o estudo de um sistema construtivo composto por blocos vazados de poliestireno expandido preenchidos com concreto moldado in loco.

Na Seção 6 se apresentam tabelas de propriedades térmicas de materiais e de elementos de construção usuais. Porém, como já foi destacado, os conjuntos de materiais não se comportam como a simples soma de suas características e, portanto, na Seção 7 se estudam conjuntos representativos de paredes e tetos. Os elementos que as formam se encontram entre os apresentados nesta Seção.
5. DEFINIÇÕES DOS PARÂMETROS TÉRMICOS UTILIZADOS

As propriedades dos materiais de construção que constam nas Seções 6 e 7 são listadas a seguir, ordenadas pelo símbolo de representação, nome e definição utilizada.

- \(\rho \) = Massa Específica: Massa do material por unidade de volume (em kg/m³)
- \(c \) = Calor Específico: Quantidade de energia térmica necessária para elevar em 1°C a temperatura de 1 kg do material (em kJ/kg°C)
- \(\rho \cdot c \) = Capacidade Térmica, ou Calor Específico Volumétrico: Quantidade de energia térmica necessária para elevar em 1°C a temperatura de 1 m³ do material (kJ/m³°C)
- \(\lambda \) = Conduzividade Térmica: Quantidade de energia térmica transmitida através de um corpo homogêneo de 1 m de comprimento, por unidade de área perpendicular à transmissão e por segundo, quando a diferença de temperatura entre as duas faces é de 1°C (em J/s/m²°C/m ou W/m°C).
- \(R \) = Resistência Térmica: Relacionada à oposição de um material, ou de um conjunto de materiais, em transmitir energia térmica (em m²°C/W). É diretamente proporcional à espessura (da parede, teto, janela, etc.).
- \(a \) = Difusividade: Propriedade de um material de propagar uma onda de temperatura num meio (a = \(\lambda / \rho \cdot c \), em m²/s)
- \(b \) = Efusividade: Propriedade de um material relacionada à sua capacidade de absorver, e restituir, energia térmica do ar que rodeia sua superfície, por unidade de tempo (b = (\(\lambda \cdot \rho \cdot c \)) \(\frac{1}{2} \), em J/m²°C \(\cdot \) s \(\frac{1}{2} \)).
- \(K_t \) = Coeficiente Geral de Troca de Calor: Valor que expressa a quantidade de energia térmica transmitida por segundo, através de um elemento da construção (ou do edifício todo), tendo em conta as resistências térmicas dos elementos considerados e as resistências superficiais interiores e exteriores (em J/s°C ou W°C).

As propriedades das superfícies, ou com mais precisão, as propriedades óticas dos acabamentos das superfícies dos materiais de construção, que aparecem nas Seções 6 e 7, estão listadas a seguir, ordenadas pelo símbolo de representação, nome e definição utilizada.

- \(\alpha \) = Coeficiente de absorção ou absorbância solar: Fração da radiação solar incidente que é absorvida.
- \(\tau \) = Coeficiente de transmissão ou transmitância solar: Fração da radiação incidente que é transmitida através de fechamento semitransparente (vidro ou plástico).
- \(\rho \) = Coeficiente de reflexão ou refletância solar: Fração da radiação incidente que é refletida pela superfície.
- \(\varepsilon \) = Coeficiente de emissão ou emitância infravermelha: Relação (quociente) entre a radiação infravermelha (chamada também de térmica) emitida por uma superfície e a emitida por um Corpo Negro (corpo padrão) com a mesma área e temperatura.
A Tabela de Propriedades Térmicas de Materiais, 6.1, está ordenada por áreas de interesse da construção, e as áreas estão ordenadas segundo uma sequência alfabética. As áreas escolhidas são:

- Agregados
- Argamassas e Pastas
- Argila natural e Produtos Cerâmicos
- Coberturas e Impermeabilizações
- Concretos - separados entre Convencionais e Leves
- Isolantes. Estes foram organizados nas seguintes sub-áreas:
 - Borrachas - Corteças - Escória - Fibrosos - Gesso - Granulares - Ladrilhos Acústicos
 - Lâ de Rocha - Lâ de Vidro - Papelão - Perlita Expandida - Plásticos Alveolares
 - Vermiculita - Vidro Celular
- Madeiras
- Materiais Sintéticos
- Metais
- Revestimentos Pêtreos
- Solocimento, Terra e Vegetação
- Vidros

Além dos materiais, também se encontram listados dados de elementos simples tais como tijolos furados e maciços, adobes, blocos e painéis de concreto e compostos.

Na primeira coluna aparece o material e nas três colunas seguintes os valores da massa específica, a condutividade térmica e o calor específico. Os elementos com várias massas específicas foram ordenados a partir do de menor para o de maior massa. Os valores listados foram extraídos de diversas fontes, encontrando-se os números que as identificam na última coluna, as referências bibliográficas estão no Apêndice 3. Foram feitas aproximações, quando várias referências apresentavam valores semelhantes. As medições foram realizadas em condições similares às de utilização, em particular as temperaturas de ensaio estavam perto das que se encontram no Rio de Janeiro, i.e., entre 20 e 35 °C. Condições especiais estão referidas ao pé da página. Para os materiais cujos três primeiros parâmetros térmicos são conhecidos, acrescentaram-se, nas colunas quinta e sexta, respectivamente, os valores calculados da difusividade e da esfusividade.

Como pode ser observado, os Isolantes tem um tratamento especial, por se tratar de uma área de materiais muito importante do ponto de vista térmico. Porém, alguns materiais, que tem importância também numa outra área, ficaram fora desta classificação. Como exemplo, julgou-se que alguns concretos leves, ainda que possuindo propriedades isolantes, deviam ser mantidos dentro da área de concretos.

Na Tabela 6.2 se encontram as Propriedades Óticas de Superfícies, i.e., as propriedades frente à radiação dos acabamentos ou tintas superficiais. Os acabamentos superficiais opacos tratam de materiais de fachadas e revestimentos, pinturas, materiais de cobertura e revestimentos metálicos, e os fechamentos semi-transparentes, os vidros das janelas, as persianas verticais, cortinas de enrollar e venezianas. Finalmente, a Tabela 6.3 relaciona Coeficientes úteis para Cálculos Térmicos de Elementos Construtivos ou para determinação do Conforto Térmico.
6.1 Tabela de propriedades térmicas de materiais

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Massa específica (Kg/m³)</th>
<th>Condição (W/m°C)</th>
<th>Calor específico (kJ/kg°C)</th>
<th>Difusividade (10⁻² m²/s)</th>
<th>Fratividade (J°C/m²/s°C)</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGREGADOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areia seca (1,2 mm de diâmetro)</td>
<td>1350</td>
<td>0,270</td>
<td>750</td>
<td>2,67</td>
<td>320</td>
<td>1</td>
</tr>
<tr>
<td>Areia abrigada da chuva</td>
<td>1500</td>
<td>0,580</td>
<td>800</td>
<td>4,83</td>
<td>830</td>
<td>2</td>
</tr>
<tr>
<td>Areia de rio (10% de umidade)</td>
<td>1600</td>
<td>0,930</td>
<td>800</td>
<td>5,87</td>
<td>750</td>
<td>4</td>
</tr>
<tr>
<td>Areia de rio (20% de umidade)</td>
<td>1700</td>
<td>1,330</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Brita ou selho</td>
<td>1000/1500</td>
<td>0,700</td>
<td>800</td>
<td>5,87</td>
<td>750/920</td>
<td>5</td>
</tr>
<tr>
<td>2600/2800</td>
<td>3,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARGAMASSAS E PASTAS DE GESSO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argamassa, de cimento e cal</td>
<td>1900</td>
<td>0,930</td>
<td>1000</td>
<td>4,89</td>
<td>1330</td>
<td>2/6</td>
</tr>
<tr>
<td>Idem</td>
<td>2100</td>
<td>1,400</td>
<td>1000</td>
<td>6,67</td>
<td>1710</td>
<td>6</td>
</tr>
<tr>
<td>Idem, com perlita (umidade 12%)</td>
<td>700</td>
<td>0,190</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Argamassa, de cimento e areia</td>
<td>1800</td>
<td>0,790</td>
<td>800</td>
<td>5,49</td>
<td>1070</td>
<td>1</td>
</tr>
<tr>
<td>(dosagem vol.1:3, umidade 0%)</td>
<td>1900</td>
<td>0,890</td>
<td>800</td>
<td>5,86</td>
<td>1160</td>
<td>2/1</td>
</tr>
<tr>
<td>(dosagem vol. 1:3, umidade 6%)</td>
<td>2000</td>
<td>1,130</td>
<td>800</td>
<td>7,06</td>
<td>1350</td>
<td>2/1</td>
</tr>
<tr>
<td>(dosagem vol.1:3, umidade 10%)</td>
<td>2100</td>
<td>1,300</td>
<td>800</td>
<td>7,74</td>
<td>1480</td>
<td>2/1</td>
</tr>
<tr>
<td>(dosagem vol.1:4, umidade 0%)</td>
<td>1950</td>
<td>0,920</td>
<td>800</td>
<td>5,90</td>
<td>1200</td>
<td>2/1</td>
</tr>
<tr>
<td>(dosagem vol.1:4, umidade 5%)</td>
<td>2000</td>
<td>1,100</td>
<td>800</td>
<td>6,88</td>
<td>1330</td>
<td>2/1</td>
</tr>
<tr>
<td>Idem, de gesso e areia (3:1,0,2%)</td>
<td>1550</td>
<td>0,650</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Idem, de gesso e areia</td>
<td>1680</td>
<td>0,820</td>
<td>840</td>
<td>5,81</td>
<td>1080</td>
<td>4</td>
</tr>
<tr>
<td>Argamassa armada de cimento</td>
<td>2200</td>
<td>1,500</td>
<td>1000</td>
<td>6,82</td>
<td>1820</td>
<td>7/5</td>
</tr>
<tr>
<td>Reboco leve</td>
<td>600</td>
<td>0,160</td>
<td>1000</td>
<td>2,67</td>
<td>310</td>
<td>8</td>
</tr>
<tr>
<td>Reboco pesado</td>
<td>1300</td>
<td>0,500</td>
<td>1000</td>
<td>3,85</td>
<td>810</td>
<td>8</td>
</tr>
<tr>
<td>Esmaque de morteiro de cal</td>
<td>1600</td>
<td>0,700</td>
<td>840</td>
<td>5,21</td>
<td>970</td>
<td>3</td>
</tr>
<tr>
<td>Esmaque de cimento e areia</td>
<td>1800</td>
<td>1,200</td>
<td>840</td>
<td>7,94</td>
<td>1350</td>
<td>3</td>
</tr>
<tr>
<td>Pasta de gesso</td>
<td>800</td>
<td>0,400</td>
<td>1100</td>
<td>4,55</td>
<td>590</td>
<td>2/6</td>
</tr>
<tr>
<td>Idem</td>
<td>1000</td>
<td>0,490</td>
<td>1100</td>
<td>4,45</td>
<td>730</td>
<td>2/6</td>
</tr>
<tr>
<td>Idem</td>
<td>1200</td>
<td>0,640</td>
<td>1100</td>
<td>4,85</td>
<td>920</td>
<td>2/6</td>
</tr>
<tr>
<td>Idem, com agregados leves</td>
<td>1400</td>
<td>0,700</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Pasta de gesso e cal</td>
<td>600</td>
<td>0,310</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Placas de gesso</td>
<td>800</td>
<td>0,370</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Idem</td>
<td>1000</td>
<td>0,440</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Idem</td>
<td>1200</td>
<td>0,510</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Idem, com fibras, para forro</td>
<td>950</td>
<td>0,350</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Idem, com vermiculita (vol.1:2)</td>
<td>500/700</td>
<td>0,250</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Idem, com vermiculita (vol.1:1)</td>
<td>700/900</td>
<td>0,300</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ARGILAS E PRODUTOS CERÂMICOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argila</td>
<td>1200</td>
<td>0,370</td>
<td>840</td>
<td>3,67</td>
<td>610</td>
<td>2/3</td>
</tr>
<tr>
<td>Idem</td>
<td>1800</td>
<td>0,800</td>
<td>840</td>
<td>5,29</td>
<td>1100</td>
<td>3</td>
</tr>
<tr>
<td>Argila expandida/Cinacita</td>
<td>900</td>
<td>0,120</td>
<td>840</td>
<td>5,29</td>
<td>1100</td>
<td>3</td>
</tr>
<tr>
<td>Ladrilhos cerâmicos</td>
<td>1800</td>
<td>1,150</td>
<td>920</td>
<td>4,83</td>
<td>1380</td>
<td>7</td>
</tr>
<tr>
<td>Idem</td>
<td>2000</td>
<td>1,720</td>
<td>920</td>
<td>9,35</td>
<td>1780</td>
<td>7/7</td>
</tr>
<tr>
<td>Telhas</td>
<td>1900</td>
<td>0,840</td>
<td>840</td>
<td>5,26</td>
<td>1560</td>
<td>8</td>
</tr>
<tr>
<td>Idem</td>
<td>2000</td>
<td>1,050</td>
<td>920</td>
<td>5,71</td>
<td>1390</td>
<td>6</td>
</tr>
<tr>
<td>Tijolo furado (valores médios)</td>
<td>1250</td>
<td>0,670</td>
<td>880</td>
<td>6,09</td>
<td>860</td>
<td>8/5</td>
</tr>
<tr>
<td>Tijolo maciço artesanal</td>
<td>1600</td>
<td>0,810</td>
<td>920</td>
<td>5,50</td>
<td>1090</td>
<td>6</td>
</tr>
<tr>
<td>Tijolo maciço prensado</td>
<td>1600</td>
<td>0,690</td>
<td>840</td>
<td>5,06</td>
<td>960</td>
<td>10</td>
</tr>
<tr>
<td>Tijolo maciço industrial</td>
<td>1700</td>
<td>0,840</td>
<td>880</td>
<td>5,61</td>
<td>1120</td>
<td>8/5</td>
</tr>
<tr>
<td>Idem</td>
<td>1800</td>
<td>0,910</td>
<td>880</td>
<td>5,74</td>
<td>1200</td>
<td>2/3</td>
</tr>
<tr>
<td>Idem</td>
<td>2000</td>
<td>1,100</td>
<td>880</td>
<td>6,25</td>
<td>1390</td>
<td>2/3</td>
</tr>
</tbody>
</table>
MATERIAL

<table>
<thead>
<tr>
<th>Material</th>
<th>Massa Específica (kg/m³)</th>
<th>Calor Específico (J/kg °C)</th>
<th>Condiutividade (W/m°C)</th>
<th>Diffusividade (m²/s)</th>
<th>Emissividade (W/m²°C)</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asfalto puro</td>
<td>2100</td>
<td>1700</td>
<td>0,700</td>
<td>1,96</td>
<td>1580</td>
<td>11/3</td>
</tr>
<tr>
<td>Betume: folhas, cartões e mantas</td>
<td>1000</td>
<td>800</td>
<td>0,230</td>
<td>2,88</td>
<td>430</td>
<td>7</td>
</tr>
<tr>
<td>Chapa de fibrocimento</td>
<td>1090</td>
<td></td>
<td>0,250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idem</td>
<td>1800</td>
<td></td>
<td>0,760</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Idem, ondulada (Brasilit)</td>
<td>1600/1800</td>
<td></td>
<td>0,410</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Idem, ondulada (Eternit)</td>
<td>2000</td>
<td></td>
<td>0,470</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Idem, ondulada (Sano)</td>
<td>1600</td>
<td></td>
<td>0,410</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Feltro betuminoso e asfalto</td>
<td>1700</td>
<td></td>
<td>0,500</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Cimento-amianto pretiado</td>
<td>1500</td>
<td></td>
<td>0,360</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Idem</td>
<td>1900</td>
<td></td>
<td>0,600</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Juntas (silicone, poliuretano, acrílico)</td>
<td>1000/1650</td>
<td></td>
<td>0,400</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Mantas de borracha</td>
<td>1500</td>
<td></td>
<td>0,170</td>
<td></td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>

CONVENTIONAIS

<table>
<thead>
<tr>
<th>Material</th>
<th>Massa Específica (kg/m³)</th>
<th>Calor Específico (J/kg °C)</th>
<th>Condiutividade (W/m°C)</th>
<th>Diffusividade (m²/s)</th>
<th>Emissividade (W/m²°C)</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comum, com agregados pétreos</td>
<td>1800</td>
<td>1000</td>
<td>0,970</td>
<td>5,39</td>
<td>1320</td>
<td>2/6</td>
</tr>
<tr>
<td>Idem</td>
<td>2000</td>
<td></td>
<td>1,160</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Idem</td>
<td>2100</td>
<td></td>
<td>1,280</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Idem</td>
<td>2200</td>
<td></td>
<td>1,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idem</td>
<td>2400</td>
<td></td>
<td>1,630</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>De caço de tijolos</td>
<td>1600</td>
<td></td>
<td>0,760</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Idem</td>
<td>1800</td>
<td></td>
<td>0,930</td>
<td></td>
<td></td>
<td>2/6</td>
</tr>
<tr>
<td>Em painéis armados</td>
<td>2400</td>
<td></td>
<td>1,750</td>
<td></td>
<td></td>
<td>2/6</td>
</tr>
<tr>
<td>Lajotas de cimento</td>
<td>2000</td>
<td></td>
<td>1,050</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Mistura com pedra (vol. 1:2:1)</td>
<td>1900/2300</td>
<td></td>
<td>1,370</td>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

LEVÉS

<table>
<thead>
<tr>
<th>Material</th>
<th>Massa Específica (kg/m³)</th>
<th>Calor Específico (J/kg °C)</th>
<th>Condiutividade (W/m°C)</th>
<th>Diffusividade (m²/s)</th>
<th>Emissividade (W/m²°C)</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celular</td>
<td>400</td>
<td>1000</td>
<td>0,090</td>
<td>2,25</td>
<td>190</td>
<td>14</td>
</tr>
<tr>
<td>Idem</td>
<td>500</td>
<td></td>
<td>0,110</td>
<td>2,20</td>
<td>235</td>
<td>14</td>
</tr>
<tr>
<td>Idem</td>
<td>600</td>
<td></td>
<td>0,130</td>
<td>2,17</td>
<td>280</td>
<td>14</td>
</tr>
<tr>
<td>Idem</td>
<td>700</td>
<td></td>
<td>0,170</td>
<td>2,45</td>
<td>345</td>
<td>14</td>
</tr>
<tr>
<td>Idem</td>
<td>1000</td>
<td></td>
<td>0,400</td>
<td>4,00</td>
<td>630</td>
<td>6</td>
</tr>
<tr>
<td>Bloco de concreto celular</td>
<td>750</td>
<td></td>
<td>0,220</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Painéis de concreto celular</td>
<td>550</td>
<td></td>
<td>0,130</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Painéis de concreto celular/Pumex</td>
<td>600</td>
<td></td>
<td>0,053</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Com argila expandida/Leca</td>
<td>500</td>
<td></td>
<td>0,140</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Idem</td>
<td>900</td>
<td></td>
<td>0,220</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Idem</td>
<td>1550</td>
<td></td>
<td>0,540</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Com perlita expandida</td>
<td>320</td>
<td></td>
<td>0,072</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Idem</td>
<td>480</td>
<td></td>
<td>0,102</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Idem</td>
<td>640</td>
<td></td>
<td>0,134</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Com poliestireno expandido</td>
<td>300</td>
<td></td>
<td>0,090</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Idem</td>
<td>500</td>
<td></td>
<td>0,150</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Idem</td>
<td>1000</td>
<td></td>
<td>0,260</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Idem</td>
<td>1300</td>
<td></td>
<td>0,350</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Em painéis, com poliestireno expandido</td>
<td>900</td>
<td></td>
<td>0,350</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Em blocos, com argila expandida</td>
<td>1450</td>
<td></td>
<td>1,280</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Em painéis, com argila expandida</td>
<td>1700</td>
<td></td>
<td>1,050</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Painel de concreto e tijolos vazados</td>
<td>1300</td>
<td></td>
<td>0,670</td>
<td></td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>
MATERIAL

BOBRACHAS

<table>
<thead>
<tr>
<th>Material</th>
<th>Massa Específica (kg/m³)</th>
<th>Conductividade (W/m·K)</th>
<th>Calor Específico (J/kg·°C)</th>
<th>Ól. Incent. (10⁻⁴ m²·s⁻¹)</th>
<th>Efus. (J°C/m²·s⁻¹)</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borracha cellular</td>
<td>120</td>
<td>0,047</td>
<td>1700</td>
<td>2,61</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>Painel de borracha esp. rígida</td>
<td>72</td>
<td>0,032</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CORTIÇAS

<table>
<thead>
<tr>
<th>Material</th>
<th>Massa Específica (kg/m³)</th>
<th>Conductividade (W/m·K)</th>
<th>Calor Específico (J/kg·°C)</th>
<th>Ól. Incent. (10⁻⁴ m²·s⁻¹)</th>
<th>Efus. (J°C/m²·s⁻¹)</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granulada (ou em placas sem ligante)</td>
<td>50</td>
<td>0,035</td>
<td>1900</td>
<td>3,68</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Idem.</td>
<td>90</td>
<td>0,036</td>
<td>1900</td>
<td>2,11</td>
<td>78</td>
<td>10/6</td>
</tr>
<tr>
<td>Idem.</td>
<td>100</td>
<td>0,040</td>
<td>1900</td>
<td>2,10</td>
<td>87</td>
<td>2/10</td>
</tr>
<tr>
<td>Idem.</td>
<td>200</td>
<td>0,051</td>
<td>1900</td>
<td>1,34</td>
<td>140</td>
<td>2/10</td>
</tr>
<tr>
<td>Idem.</td>
<td>300</td>
<td>0,056</td>
<td>1900</td>
<td>0,98</td>
<td>180</td>
<td>2/10</td>
</tr>
<tr>
<td>Idem.</td>
<td>400</td>
<td>0,069</td>
<td>1900</td>
<td>0,91</td>
<td>230</td>
<td>2/10</td>
</tr>
<tr>
<td>Em placas, com ligante asfáltico</td>
<td>230</td>
<td>0,046</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ESCORIAS

<table>
<thead>
<tr>
<th>Material</th>
<th>Massa Específica (kg/m³)</th>
<th>Conductividade (W/m·K)</th>
<th>Calor Específico (J/kg·°C)</th>
<th>Ól. Incent. (10⁻⁴ m²·s⁻¹)</th>
<th>Efus. (J°C/m²·s⁻¹)</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expandeda pura</td>
<td>100</td>
<td>0,041</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idem.</td>
<td>200</td>
<td>0,046</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expandeda com breu</td>
<td>100/150</td>
<td>0,043</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idem.</td>
<td>150/250</td>
<td>0,048</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIBROSOS

<table>
<thead>
<tr>
<th>Material</th>
<th>Massa Específica (kg/m³)</th>
<th>Conductividade (W/m·K)</th>
<th>Calor Específico (J/kg·°C)</th>
<th>Ól. Incent. (10⁻⁴ m²·s⁻¹)</th>
<th>Efus. (J°C/m²·s⁻¹)</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algodão</td>
<td>80</td>
<td>0,042</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palha (Sapé)</td>
<td>200</td>
<td>0,120</td>
<td>2300</td>
<td>2,61</td>
<td>230</td>
<td>6</td>
</tr>
</tbody>
</table>

GESSOS

<table>
<thead>
<tr>
<th>Material</th>
<th>Massa Específica (kg/m³)</th>
<th>Conductividade (W/m·K)</th>
<th>Calor Específico (J/kg·°C)</th>
<th>Ól. Incent. (10⁻⁴ m²·s⁻¹)</th>
<th>Efus. (J°C/m²·s⁻¹)</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celular seco</td>
<td>192</td>
<td>0,063</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idem.</td>
<td>288</td>
<td>0,085</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idem.</td>
<td>384</td>
<td>0,111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idem.</td>
<td>480</td>
<td>0,144</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Em flocos secos e sofos</td>
<td>288</td>
<td>0,049</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idem.</td>
<td>384</td>
<td>0,069</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idem.</td>
<td>544</td>
<td>0,086</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LADRILHOS ACÚSTICOS

<table>
<thead>
<tr>
<th>Material</th>
<th>Massa Específica (kg/m³)</th>
<th>Conductividade (W/m·K)</th>
<th>Calor Específico (J/kg·°C)</th>
<th>Ól. Incent. (10⁻⁴ m²·s⁻¹)</th>
<th>Efus. (J°C/m²·s⁻¹)</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leve</td>
<td>290</td>
<td>0,050</td>
<td>800</td>
<td>2,16</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Pesado</td>
<td>340</td>
<td>0,053</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LÁ MINERAL

<table>
<thead>
<tr>
<th>Material</th>
<th>Massa Específica (kg/m³)</th>
<th>Conductividade (W/m·K)</th>
<th>Calor Específico (J/kg·°C)</th>
<th>Ól. Incent. (10⁻⁴ m²·s⁻¹)</th>
<th>Efus. (J°C/m²·s⁻¹)</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manta de lã de rocha</td>
<td>35</td>
<td>0,035</td>
<td>920</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idem.</td>
<td>150</td>
<td>0,044</td>
<td>920</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manta de lã de rocha/Rockfibras</td>
<td>25</td>
<td>0,034</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idem.</td>
<td>48</td>
<td>0,032</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Painéis de lã de rocha/Rockfibras</td>
<td>80</td>
<td>0,032</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idem.</td>
<td>110</td>
<td>0,030</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material fibroso de rocha</td>
<td>290</td>
<td>0,042</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idem.</td>
<td>340</td>
<td>0,043</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manta de lã de vidro/Isover</td>
<td>12</td>
<td>0,045</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idem.</td>
<td>16</td>
<td>0,042</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idem.</td>
<td>20</td>
<td>0,038</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MATERIAL

LÁ MINERAL

<table>
<thead>
<tr>
<th>Isolante</th>
<th>Massa Específica (p) Kg/m²</th>
<th>Conductividade (λ) W/m·°C</th>
<th>Calor Específico (c) j/kg·°C</th>
<th>Diffusividade (α) 10⁻² m²/s</th>
<th>Emissividade (ε) 1/°C/m²·s⁻¹</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manta de lã de vidro/Poliplies</td>
<td>10</td>
<td>0,048</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Manta de lã de vidro/Eucatex</td>
<td>12</td>
<td>0,035</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Idem</td>
<td>16</td>
<td>0,034</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Idem</td>
<td>48</td>
<td>0,033</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Painéis de lã de vidro/Eucatex</td>
<td>32</td>
<td>0,034</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Idem</td>
<td>60</td>
<td>0,031</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Painéis de lã de vidro/Isover</td>
<td>50</td>
<td>0,030</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Painéis de lã de vidro/Poliplies</td>
<td>15</td>
<td>0,044</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Idem</td>
<td>22</td>
<td>0,041</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Idem</td>
<td>50</td>
<td>0,035</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Idem</td>
<td>75</td>
<td>0,034</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Idem</td>
<td>100</td>
<td>0,041</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Lá de vidro aplicada in loco/Isover</td>
<td>50</td>
<td>0,033</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Idem</td>
<td>80</td>
<td>0,031</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Idem</td>
<td>100</td>
<td>0,031</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

MADEIRAS COMO ISOLANTES

<table>
<thead>
<tr>
<th>Material</th>
<th>Massa Específica (p) Kg/m²</th>
<th>Conductividade (λ) W/m·°C</th>
<th>Calor Específico (c) j/kg·°C</th>
<th>Diffusividade (α) 10⁻² m²/s</th>
<th>Emissividade (ε) 1/°C/m²·s⁻¹</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balsa</td>
<td>60/120</td>
<td>0,052</td>
<td></td>
<td></td>
<td></td>
<td>5/10</td>
</tr>
<tr>
<td>Cavaco de madeira</td>
<td>74</td>
<td>0,055</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Idem</td>
<td>172</td>
<td>0,058</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Fibra de madeira</td>
<td>135</td>
<td>0,042</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Idem</td>
<td>250</td>
<td>0,048</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Madeira mineralizada/Climatex</td>
<td>440</td>
<td>0,037</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Painel de fibra aglomerada</td>
<td>200</td>
<td>0,047</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Idem</td>
<td>300</td>
<td>0,054</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Idem</td>
<td>350</td>
<td>0,056</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Madeira mineralizada/Climatex</td>
<td>500</td>
<td>0,092</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Painel de fibra aglomerada/Eucatex</td>
<td>230</td>
<td>0,036</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Idem</td>
<td>260</td>
<td>0,050</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Painel de partículas aglomeradas</td>
<td>300</td>
<td>0,069</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Idem</td>
<td>400</td>
<td>0,078</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Idem</td>
<td>500</td>
<td>0,087</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Raspas de plana</td>
<td>600</td>
<td>0,090</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Serragem variada</td>
<td>140/240</td>
<td>0,065</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

PAPIÃO

<table>
<thead>
<tr>
<th>Material</th>
<th>Massa Específica (p) Kg/m²</th>
<th>Conductividade (λ) W/m·°C</th>
<th>Calor Específico (c) j/kg·°C</th>
<th>Diffusividade (α) 10⁻² m²/s</th>
<th>Emissividade (ε) 1/°C/m²·s⁻¹</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papelão</td>
<td>650</td>
<td>0,080</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Papelão corrugado com 4 camadas/pol.</td>
<td>170</td>
<td>0,100</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Papelão laminado</td>
<td>480</td>
<td>0,072</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

PÉRTITA EXPANDIDA

<table>
<thead>
<tr>
<th>Material</th>
<th>Massa Específica (p) Kg/m²</th>
<th>Conductividade (λ) W/m·°C</th>
<th>Calor Específico (c) j/kg·°C</th>
<th>Diffusividade (α) 10⁻² m²/s</th>
<th>Emissividade (ε) 1/°C/m²·s⁻¹</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soleta</td>
<td>30/65</td>
<td>0,039/0,045</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Idem</td>
<td>65/120</td>
<td>0,045/0,052</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Idem</td>
<td>120/175</td>
<td>0,052/0,060</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Placas, aglomerado c/liga benuminosa</td>
<td>170/190</td>
<td>0,058</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
MATERIAL

PLÁSTICOS AL VEOLARES

<table>
<thead>
<tr>
<th>Material</th>
<th>Massa Específica (ρ)</th>
<th>Conductividade (λ)</th>
<th>Capacidade Específica (c)</th>
<th>Dilatância (α)</th>
<th>Efusividade (k)</th>
<th>Porese</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kg/m³</td>
<td>W/mK°C</td>
<td>j/kg°C</td>
<td>10⁻⁷ m²/s</td>
<td>J°C/m²/s²</td>
<td></td>
</tr>
<tr>
<td>Poliestireno expandido em placas</td>
<td>15</td>
<td>0,036</td>
<td>1200</td>
<td>20,0</td>
<td>25</td>
<td>4/15</td>
</tr>
<tr>
<td>Idem</td>
<td>20</td>
<td>0,034</td>
<td>1200</td>
<td>14,2</td>
<td>29</td>
<td>4/15</td>
</tr>
<tr>
<td>Idem</td>
<td>30</td>
<td>0,031</td>
<td>1200</td>
<td>8,6</td>
<td>33</td>
<td>4/15</td>
</tr>
<tr>
<td>Poliestireno expandido /Isopor</td>
<td>15</td>
<td>0,032</td>
<td>1200</td>
<td>13,8</td>
<td>28</td>
<td>9</td>
</tr>
<tr>
<td>Idem</td>
<td>20</td>
<td>0,029</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Idem</td>
<td>40</td>
<td>0,027</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Idem</td>
<td>70</td>
<td>0,028</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Poliestireno expandido /Alvisol</td>
<td>35</td>
<td>0,038</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Poliestireno moldado/Isosolfoam</td>
<td>35</td>
<td>0,029</td>
<td>1200</td>
<td>6,0</td>
<td>35</td>
<td>9</td>
</tr>
<tr>
<td>Poliestireno extrudado/Glascofoam</td>
<td>35</td>
<td>0,030</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Poliestireno extrudado/Styrofoam</td>
<td>35</td>
<td>0,030</td>
<td>1200</td>
<td>7,1</td>
<td>35</td>
<td>9</td>
</tr>
<tr>
<td>Poliuretano celular em placas</td>
<td>24</td>
<td>0,023</td>
<td>1600</td>
<td>6,0</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>Idem</td>
<td>30</td>
<td>0,026</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Placas de espuma fenólica/Unired</td>
<td>30</td>
<td>0,037</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Idem</td>
<td>40</td>
<td>0,037</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Idem</td>
<td>60</td>
<td>0,040</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Idem</td>
<td>80</td>
<td>0,042</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Poliuretano, espuma aplicada in loco</td>
<td>24/40</td>
<td>0,023/0,026</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

VERMICULITA

<table>
<thead>
<tr>
<th>Material</th>
<th>Massa Específica (ρ)</th>
<th>Conductividade (λ)</th>
<th>Capacidade Específica (c)</th>
<th>Dilatância (α)</th>
<th>Efusividade (k)</th>
<th>Porese</th>
</tr>
</thead>
<tbody>
<tr>
<td>Em placas, aglomerada com silicato</td>
<td>60/100</td>
<td>0,063</td>
<td>1350</td>
<td>4,7/7,7</td>
<td>70/90</td>
<td>4</td>
</tr>
<tr>
<td>Idem</td>
<td>110/130</td>
<td>0,068</td>
<td>1350</td>
<td>3,9/4,6</td>
<td>100/110</td>
<td>4</td>
</tr>
<tr>
<td>250</td>
<td>0,079</td>
<td>1000</td>
<td>3,16</td>
<td>140</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>0,116</td>
<td>1000</td>
<td>2,90</td>
<td>215</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Em placas, aglomerada com silicato</td>
<td>200/300</td>
<td>0,100</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Idem</td>
<td>300/400</td>
<td>0,140</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>400/500</td>
<td>0,190</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

VIDRO CELULAR

<table>
<thead>
<tr>
<th>Material</th>
<th>Massa Específica (ρ)</th>
<th>Conductividade (λ)</th>
<th>Capacidade Específica (c)</th>
<th>Dilatância (α)</th>
<th>Efusividade (k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Em placas homogêneas</td>
<td>110/140</td>
<td>0,048</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idem</td>
<td>125</td>
<td>0,520</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idem</td>
<td>150</td>
<td>0,058</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MATERIAL

DADOS GERAIS

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Massa Específica(ρ)</th>
<th>Condutividade (λ)</th>
<th>Calor Específico(c)</th>
<th>Difusividade (a)</th>
<th>Efusividade (b)</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madeira natural, leve</td>
<td>400</td>
<td>0,110</td>
<td>1900</td>
<td>1,44</td>
<td>290</td>
<td>16</td>
</tr>
<tr>
<td>Idem, média</td>
<td>600</td>
<td>0,150</td>
<td>1900</td>
<td>1,32</td>
<td>410</td>
<td>16</td>
</tr>
<tr>
<td>Idem, dura</td>
<td>800</td>
<td>0,200</td>
<td>1900</td>
<td>1,32</td>
<td>550</td>
<td>16</td>
</tr>
<tr>
<td>Madeira pesada</td>
<td>800/1000</td>
<td>0,290</td>
<td>1900</td>
<td>1,32</td>
<td>550</td>
<td>16</td>
</tr>
<tr>
<td>Madeira resínosa, leve (pinho)</td>
<td>450/550</td>
<td>0,150</td>
<td>2300</td>
<td>1,10</td>
<td>300</td>
<td>6</td>
</tr>
<tr>
<td>Idem, pesada</td>
<td>600/750</td>
<td>0,230</td>
<td>2300</td>
<td>0,87</td>
<td>680</td>
<td>6</td>
</tr>
</tbody>
</table>

ELEMENTOS DE MADEIRA

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Massa Específica(ρ)</th>
<th>Condutividade (λ)</th>
<th>Calor Específico(c)</th>
<th>Difusividade (a)</th>
<th>Efusividade (b)</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laminados e aglomerados</td>
<td>600</td>
<td>0,100</td>
<td>2300</td>
<td>1,10</td>
<td>300</td>
<td>6</td>
</tr>
<tr>
<td>Idem</td>
<td>600</td>
<td>0,130</td>
<td>2300</td>
<td>1,00</td>
<td>400</td>
<td>6</td>
</tr>
<tr>
<td>Madeira compensada</td>
<td>800</td>
<td>0,170</td>
<td>2300</td>
<td>0,92</td>
<td>500</td>
<td>6</td>
</tr>
<tr>
<td>Painel de fibra de madeira aglomerada</td>
<td>800</td>
<td>0,110</td>
<td>2300</td>
<td>0,87</td>
<td>500</td>
<td>6</td>
</tr>
<tr>
<td>Idem</td>
<td>800</td>
<td>0,130</td>
<td>2300</td>
<td>0,87</td>
<td>600</td>
<td>6</td>
</tr>
<tr>
<td>Idem, com cimento</td>
<td>600</td>
<td>0,160</td>
<td>2300</td>
<td>0,87</td>
<td>600</td>
<td>6</td>
</tr>
<tr>
<td>Painel de partículas de madeira presaada</td>
<td>350/450</td>
<td>0,100</td>
<td>2300</td>
<td>0,87</td>
<td>300</td>
<td>6</td>
</tr>
<tr>
<td>Idem</td>
<td>600</td>
<td>0,100</td>
<td>2300</td>
<td>0,87</td>
<td>300</td>
<td>6</td>
</tr>
<tr>
<td>Painel de partículas de madeira extrudada</td>
<td>550/650</td>
<td>0,160</td>
<td>2300</td>
<td>0,87</td>
<td>600</td>
<td>6</td>
</tr>
</tbody>
</table>

PÓR TIPOS DE MADEIRA

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Massa Específica(ρ)</th>
<th>Condutividade (λ)</th>
<th>Calor Específico(c)</th>
<th>Difusividade (a)</th>
<th>Efusividade (b)</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abeto, Cedro e Pinheiro (pitus)</td>
<td>300/450</td>
<td>0,210</td>
<td>1,75</td>
<td>0,72</td>
<td>1,85</td>
<td>4</td>
</tr>
<tr>
<td>Bétula</td>
<td>680</td>
<td>0,130/1,10</td>
<td>1,75</td>
<td>0,72</td>
<td>1,85</td>
<td>4</td>
</tr>
<tr>
<td>Bordo</td>
<td>700</td>
<td>0,160/2,10</td>
<td>1,75</td>
<td>0,72</td>
<td>1,85</td>
<td>4</td>
</tr>
<tr>
<td>Carvalho (12% de umidade)</td>
<td>660/750</td>
<td>0,160/4,10</td>
<td>1,75</td>
<td>0,72</td>
<td>1,85</td>
<td>4</td>
</tr>
<tr>
<td>Carvalho, frutíferas</td>
<td>700</td>
<td>0,220/7,10</td>
<td>1,75</td>
<td>0,72</td>
<td>1,85</td>
<td>4</td>
</tr>
<tr>
<td>Cedro (12% de umidade)</td>
<td>820</td>
<td>0,210/7,10</td>
<td>1,75</td>
<td>0,72</td>
<td>1,85</td>
<td>4</td>
</tr>
<tr>
<td>Cipreste</td>
<td>500</td>
<td>0,130/1,10</td>
<td>1,75</td>
<td>0,72</td>
<td>1,85</td>
<td>4</td>
</tr>
<tr>
<td>Freixo</td>
<td>740</td>
<td>0,170/1,10</td>
<td>1,75</td>
<td>0,72</td>
<td>1,85</td>
<td>4</td>
</tr>
<tr>
<td>Pinho (12% de umidade)</td>
<td>460</td>
<td>0,140</td>
<td>1,75</td>
<td>0,72</td>
<td>1,85</td>
<td>4</td>
</tr>
<tr>
<td>Pinho (15% de umidade)</td>
<td>570/660</td>
<td>0,140/4,10</td>
<td>1,75</td>
<td>0,72</td>
<td>1,85</td>
<td>4</td>
</tr>
</tbody>
</table>

MATERIAIS SINTÉTICOS

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Massa Específica(ρ)</th>
<th>Condutividade (λ)</th>
<th>Calor Específico(c)</th>
<th>Difusividade (a)</th>
<th>Efusividade (b)</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fórmo-fenólicos</td>
<td>1000/1500</td>
<td>0,400</td>
<td>1,740/2,00</td>
<td>1,31</td>
<td>470</td>
<td>9</td>
</tr>
<tr>
<td>Mastique para juntas</td>
<td>1000/1650</td>
<td>0,400</td>
<td>1,740/2,00</td>
<td>1,31</td>
<td>470</td>
<td>9</td>
</tr>
<tr>
<td>Poliamida (nylon, etc.)</td>
<td>1000/1350</td>
<td>0,400</td>
<td>1,740/2,00</td>
<td>1,31</td>
<td>470</td>
<td>9</td>
</tr>
<tr>
<td>Poliéster</td>
<td>1400/1700</td>
<td>0,400</td>
<td>1,740/2,00</td>
<td>1,31</td>
<td>470</td>
<td>9</td>
</tr>
<tr>
<td>Polietileno</td>
<td>900/1000</td>
<td>0,400</td>
<td>1,740/2,00</td>
<td>1,31</td>
<td>470</td>
<td>9</td>
</tr>
<tr>
<td>Borrachas sintéticas</td>
<td>1300/1500</td>
<td>0,400</td>
<td>1,740/2,00</td>
<td>1,31</td>
<td>470</td>
<td>9</td>
</tr>
<tr>
<td>Polimetacrilato de metila (acrílicos)</td>
<td>1100/1400</td>
<td>1,740/2,00</td>
<td>1,740/2,00</td>
<td>1,31</td>
<td>470</td>
<td>9</td>
</tr>
<tr>
<td>Polícloreto de vinil (PVC/ Vec)</td>
<td>1200/1400</td>
<td>0,400</td>
<td>1,740/2,00</td>
<td>1,31</td>
<td>470</td>
<td>9</td>
</tr>
</tbody>
</table>
MATERIAL

<table>
<thead>
<tr>
<th></th>
<th>Massa Especifica (kg/m³)</th>
<th>Conducuratividade (kJ/m²K)</th>
<th>Calor Especifico (kJ/kg °C)</th>
<th>Dilatatividade (10⁻⁵ m²/°C)</th>
<th>Elasticidade (J/m²/°C²)</th>
<th>Óleo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aço carbono (1%)</td>
<td>7800</td>
<td>43</td>
<td>470</td>
<td>120</td>
<td>12600</td>
<td>17</td>
</tr>
<tr>
<td>Aço cromo (5%)</td>
<td>7800</td>
<td>39</td>
<td>460</td>
<td>110</td>
<td>11800</td>
<td>17</td>
</tr>
<tr>
<td>Alumínio</td>
<td>2700</td>
<td>204</td>
<td>896</td>
<td>840</td>
<td>22200</td>
<td>17</td>
</tr>
<tr>
<td>Cobre</td>
<td>8900</td>
<td>290</td>
<td>380</td>
<td>1150</td>
<td>36300</td>
<td>17</td>
</tr>
<tr>
<td>Chumbo</td>
<td>11400</td>
<td>35</td>
<td>130</td>
<td>240</td>
<td>7200</td>
<td>17</td>
</tr>
<tr>
<td>Duralumínio</td>
<td>2800</td>
<td>160</td>
<td>880</td>
<td>650</td>
<td>19900</td>
<td>17</td>
</tr>
<tr>
<td>Ferro puro</td>
<td>7500</td>
<td>73</td>
<td>452</td>
<td>260</td>
<td>16100</td>
<td>17</td>
</tr>
<tr>
<td>Ferro forjado</td>
<td>7850</td>
<td>58</td>
<td>460</td>
<td>160</td>
<td>14500</td>
<td>17</td>
</tr>
<tr>
<td>Ferro fundido gusa</td>
<td>7500</td>
<td>56</td>
<td>460</td>
<td>160</td>
<td>13900</td>
<td>17/10</td>
</tr>
<tr>
<td>Lata</td>
<td>8500</td>
<td>110</td>
<td>380</td>
<td>340</td>
<td>18900</td>
<td>17</td>
</tr>
<tr>
<td>Zinco</td>
<td>7100</td>
<td>110</td>
<td>380</td>
<td>410</td>
<td>17200</td>
<td>17</td>
</tr>
</tbody>
</table>

REVESTIMENTOS PÉTREOS

<table>
<thead>
<tr>
<th></th>
<th>Massa Especifica (kg/m³)</th>
<th>Conducuratividade (kJ/m²K)</th>
<th>Calor Especifico (kJ/kg °C)</th>
<th>Dilatatividade (10⁻⁵ m²/°C)</th>
<th>Elasticidade (J/m²/°C²)</th>
<th>Óleo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ardósia</td>
<td>2700</td>
<td>1,700(1)</td>
<td>840</td>
<td>7,50</td>
<td>1960</td>
<td>2/12</td>
</tr>
<tr>
<td>Idem</td>
<td>2700</td>
<td>2,800(1/1)</td>
<td>840</td>
<td>12,30</td>
<td>2520</td>
<td>2/12</td>
</tr>
<tr>
<td>Calcário</td>
<td>1400/1600</td>
<td>0,950</td>
<td>920</td>
<td>6,90</td>
<td>1140</td>
<td>5/18</td>
</tr>
<tr>
<td>Idem</td>
<td>1600/1800</td>
<td>1,050</td>
<td>920</td>
<td>6,70</td>
<td>1280</td>
<td>5/18</td>
</tr>
<tr>
<td>Idem</td>
<td>1800/2000</td>
<td>1,240</td>
<td>920</td>
<td>7,10</td>
<td>1470</td>
<td>18/19</td>
</tr>
<tr>
<td>Idem</td>
<td>2000/2200</td>
<td>1,490</td>
<td>920</td>
<td>7,30</td>
<td>1700</td>
<td>18/19</td>
</tr>
<tr>
<td>Idem</td>
<td>2200/2400</td>
<td>1,700</td>
<td>920</td>
<td>8,00</td>
<td>1900</td>
<td>5/18</td>
</tr>
<tr>
<td>Idem</td>
<td>2400/2600</td>
<td>2,200</td>
<td>920</td>
<td>9,60</td>
<td>2250</td>
<td>5/18</td>
</tr>
<tr>
<td>Granito</td>
<td>2400/2700</td>
<td>3,500</td>
<td>840</td>
<td>16,00</td>
<td>2800</td>
<td>5</td>
</tr>
<tr>
<td>Idem</td>
<td>2500/3000</td>
<td>3,500</td>
<td>840</td>
<td>15,30</td>
<td>2800</td>
<td>5/6</td>
</tr>
<tr>
<td>Mármore</td>
<td>2600</td>
<td>2,300</td>
<td>840</td>
<td>10,30</td>
<td>2240</td>
<td>13</td>
</tr>
<tr>
<td>Idem</td>
<td>2500</td>
<td>2,000</td>
<td>900</td>
<td>8,90</td>
<td>2120</td>
<td>13</td>
</tr>
<tr>
<td>Idem</td>
<td>2600/2700</td>
<td>2,900</td>
<td>840</td>
<td>13,00</td>
<td>2540</td>
<td>6</td>
</tr>
<tr>
<td>Idem</td>
<td>2800</td>
<td>3,500</td>
<td>920</td>
<td>13,60</td>
<td>3000</td>
<td>3</td>
</tr>
</tbody>
</table>

SOLOCIMENTO, TERRA E VEGETAÇÃO

<table>
<thead>
<tr>
<th></th>
<th>Massa Especifica (kg/m³)</th>
<th>Conducuratividade (kJ/m²K)</th>
<th>Calor Especifico (kJ/kg °C)</th>
<th>Dilatatividade (10⁻⁵ m²/°C)</th>
<th>Elasticidade (J/m²/°C²)</th>
<th>Óleo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Óleo</td>
<td>1700</td>
<td>0,520</td>
<td>840</td>
<td>3,65</td>
<td>860</td>
<td>19</td>
</tr>
<tr>
<td>Solocimento</td>
<td>2000</td>
<td>0,780</td>
<td>580</td>
<td>6,77</td>
<td>950</td>
<td>20</td>
</tr>
<tr>
<td>Terra argilosa seca</td>
<td>1600/1900</td>
<td>0,280/0,2800</td>
<td>840</td>
<td>6,70</td>
<td>950</td>
<td>20</td>
</tr>
<tr>
<td>Terra comprimida (bloco, seco)</td>
<td>1700/1900</td>
<td>1,100</td>
<td>840</td>
<td>6,9/7,7</td>
<td>1300</td>
<td>5</td>
</tr>
<tr>
<td>Terra úmida</td>
<td>1800</td>
<td>0,580</td>
<td>1460</td>
<td>2,21</td>
<td>1230</td>
<td>17</td>
</tr>
</tbody>
</table>

VIDROS

<table>
<thead>
<tr>
<th></th>
<th>Massa Especifica (kg/m³)</th>
<th>Conducuratividade (kJ/m²K)</th>
<th>Calor Especifico (kJ/kg °C)</th>
<th>Dilatatividade (10⁻⁵ m²/°C)</th>
<th>Elasticidade (J/m²/°C²)</th>
<th>Óleo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comum (menor conteúdo de ferro)</td>
<td>2500</td>
<td>0,810</td>
<td>840</td>
<td>5,24</td>
<td>1520</td>
<td>13</td>
</tr>
<tr>
<td>Idem (maior conteúdo de ferro)</td>
<td>2500</td>
<td>1,100</td>
<td>840</td>
<td>5,24</td>
<td>1520</td>
<td>13</td>
</tr>
<tr>
<td>Idem</td>
<td>2700</td>
<td>1,150</td>
<td>840</td>
<td>5,07</td>
<td>1615</td>
<td>6/5</td>
</tr>
</tbody>
</table>
6.2 Tabela de propriedades óticas de superfícies (propriedades frente à radiação dos acabamentos ou tintas)

<table>
<thead>
<tr>
<th>Absorção Solar (α)</th>
<th>Espetância Infra-vermelha (τ)</th>
<th>Fonte</th>
</tr>
</thead>
</table>

ACABAMENTO SUPERFICIAL OPACO

INDICAÇÃO GERAL PARA CORES DE PINTURAS

<table>
<thead>
<tr>
<th>Cor</th>
<th>Absorção Solar (α)</th>
<th>Espetância Infra-vermelha (τ)</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Braço, caição ou mate</td>
<td>0.20 - 0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cinza claro para escuro</td>
<td>0.40 - 0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verde, vermelho e marrom</td>
<td>0.50 - 0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marron escuro até azul.</td>
<td>0.70 - 0.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azul escuro até preto</td>
<td>0.80 - 0.90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATERIAIS DE FACHADAS E REVESTIMENTOS

<table>
<thead>
<tr>
<th>Material</th>
<th>Absorção Solar (α)</th>
<th>Espetância Infra-vermelha (τ)</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tijolo vermelho aparente</td>
<td>0.70-0.80</td>
<td>0.85-0.95</td>
<td>21/22</td>
</tr>
<tr>
<td>Tijolo amarelo escuro</td>
<td>0.50-0.70</td>
<td>0.85-0.95</td>
<td>16/22</td>
</tr>
<tr>
<td>Tijolo amarelo claro</td>
<td>0.30-0.50</td>
<td>0.40-0.60</td>
<td>3</td>
</tr>
<tr>
<td>Concreto aparente (limpo)</td>
<td>0.55</td>
<td>0.90</td>
<td>16/21</td>
</tr>
<tr>
<td>Concreto aparente (envelhecido)</td>
<td>0.70-0.80</td>
<td>0.90</td>
<td>16/21</td>
</tr>
<tr>
<td>Pedra escura aparente</td>
<td>0.65-0.80</td>
<td>0.85-0.95</td>
<td>1</td>
</tr>
<tr>
<td>Pedra calcária clara</td>
<td>0.57</td>
<td>0.95</td>
<td>21</td>
</tr>
<tr>
<td>Mármore claro</td>
<td>0.46</td>
<td>0.95</td>
<td>18/21</td>
</tr>
<tr>
<td>Reboque claro</td>
<td>0.30-0.50</td>
<td>0.85-0.95</td>
<td>1</td>
</tr>
<tr>
<td>Madeira de Pinho</td>
<td>0.60</td>
<td>0.95</td>
<td>23</td>
</tr>
<tr>
<td>Madeira de Carvalho</td>
<td>0.60</td>
<td>0.95</td>
<td>23</td>
</tr>
<tr>
<td>Madeira</td>
<td>0.80</td>
<td>0.95</td>
<td>9</td>
</tr>
</tbody>
</table>

PAVIMENTOS E CHÃO

<table>
<thead>
<tr>
<th>Material</th>
<th>Absorção Solar (α)</th>
<th>Espetância Infra-vermelha (τ)</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asfalto</td>
<td>0.93</td>
<td>0.93</td>
<td>18</td>
</tr>
<tr>
<td>Pavimento de asfalto</td>
<td>0.95</td>
<td>0.90</td>
<td>16</td>
</tr>
<tr>
<td>Terra</td>
<td>0.75</td>
<td>0.75</td>
<td>21</td>
</tr>
<tr>
<td>Borracha, prota; dura</td>
<td></td>
<td>0.90-0.95</td>
<td>23</td>
</tr>
<tr>
<td>Borracha, parda, aspera</td>
<td></td>
<td>0.86</td>
<td>23</td>
</tr>
<tr>
<td>Grama</td>
<td>0.67</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Lajotas e azulejos, cores claros</td>
<td>0.25-0.40</td>
<td>0.90-0.95</td>
<td>13</td>
</tr>
<tr>
<td>Lajotas e azulejos, cores escuros</td>
<td>0.80</td>
<td>0.90</td>
<td>13</td>
</tr>
<tr>
<td>Areia seca</td>
<td>0.82</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Areia molhada</td>
<td>0.91</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Superfície da água (incid. solar 80°-90°)</td>
<td>0.53</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Superfície da água (incidência solar 50°)</td>
<td>0.90</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Absorção da floresta (verde claro)</td>
<td>0.85</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Absorção da floresta (verde escuro)</td>
<td>0.95</td>
<td></td>
<td>21</td>
</tr>
</tbody>
</table>

PINTURAS

<table>
<thead>
<tr>
<th>Pintura</th>
<th>Absorção Solar (α)</th>
<th>Espetância Infra-vermelha (τ)</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betuminosas</td>
<td>0.85-0.98</td>
<td>0.95</td>
<td>6</td>
</tr>
<tr>
<td>Caições</td>
<td>0.20-0.50</td>
<td>0.85-0.95</td>
<td>1</td>
</tr>
<tr>
<td>Preta</td>
<td>0.85-0.95</td>
<td>0.90-0.98</td>
<td>21/22</td>
</tr>
<tr>
<td>Branca</td>
<td>0.30</td>
<td>0.90</td>
<td>16</td>
</tr>
<tr>
<td>Branca (ZnO)</td>
<td>0.18</td>
<td>0.95</td>
<td>18</td>
</tr>
<tr>
<td>Branco de chumbo</td>
<td>0.29</td>
<td>0.89</td>
<td>21</td>
</tr>
<tr>
<td>Verde claro brillânté (ótico)</td>
<td>0.50</td>
<td>0.95</td>
<td>21</td>
</tr>
<tr>
<td>Cinza e verde escuro (ótico)</td>
<td>0.75</td>
<td>0.95</td>
<td>21</td>
</tr>
<tr>
<td>Pintura de alumínio</td>
<td>0.55</td>
<td>0.55</td>
<td>21</td>
</tr>
</tbody>
</table>
MATERIAIS DE COBERTURA

<table>
<thead>
<tr>
<th>Material</th>
<th>Absortância Solar (α)</th>
<th>Emissância Infravermelha (ε)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telhas de barro, moldadas</td>
<td>0,65-0,80</td>
<td>0,85-0,95</td>
</tr>
<tr>
<td>Telhas de barro, cor vermelha</td>
<td>0,65-0,80</td>
<td>0,85-0,95</td>
</tr>
<tr>
<td>Telhas de barro, cor bege</td>
<td>0,30-0,50</td>
<td>0,40-0,60</td>
</tr>
<tr>
<td>Telhas de concreto, natural</td>
<td>0,65</td>
<td>0,90</td>
</tr>
<tr>
<td>Telhas de concreto, pint. de preto</td>
<td>0,90</td>
<td>0,90</td>
</tr>
<tr>
<td>Chapas galvanizadas, novas</td>
<td>0,40-0,65</td>
<td>0,20-0,30</td>
</tr>
<tr>
<td>Chapas de fibrocimento, sujas</td>
<td>0,70</td>
<td>0,95</td>
</tr>
<tr>
<td>Impermeabilização</td>
<td>0,90</td>
<td>0,95</td>
</tr>
<tr>
<td>Laje volturana</td>
<td>0,70</td>
<td>0,90</td>
</tr>
<tr>
<td>Telha de madeira</td>
<td>0,60</td>
<td>0,92</td>
</tr>
<tr>
<td>Ardósia</td>
<td>0,89</td>
<td></td>
</tr>
</tbody>
</table>

REVESTIMENTOS METÁLICOS

<table>
<thead>
<tr>
<th>Material</th>
<th>Absortância Solar (α)</th>
<th>Emissância Infravermelha (ε)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumínio fosco; aço galvanizado</td>
<td>0,40-0,65</td>
<td>0,20-0,30</td>
</tr>
<tr>
<td>Folha de alumínio, polido</td>
<td>0,15</td>
<td>0,08</td>
</tr>
<tr>
<td>Folha de alumínio, oxidado</td>
<td>0,20</td>
<td>0,11</td>
</tr>
<tr>
<td>Alumínio e cromo, polidos</td>
<td>0,10-0,40</td>
<td>0,02-0,04</td>
</tr>
<tr>
<td>Latão e cobre, polidos</td>
<td>0,30-0,50</td>
<td>0,02-0,05</td>
</tr>
<tr>
<td>Latão e cobre, sujos</td>
<td>0,60</td>
<td>0,20</td>
</tr>
<tr>
<td>Zinco, oxidado</td>
<td>0,40-0,63</td>
<td>0,11</td>
</tr>
<tr>
<td>Aço, polido</td>
<td>0,40-0,65</td>
<td>0,20-0,30</td>
</tr>
<tr>
<td>Ferro galvanizado</td>
<td>0,40-0,65</td>
<td>0,20-0,30</td>
</tr>
<tr>
<td>Chapas de ferro galvanizado, enferrujada</td>
<td>0,90</td>
<td>0,28</td>
</tr>
</tbody>
</table>

VIDROS

<table>
<thead>
<tr>
<th>Material</th>
<th>Absortância Solar (α)</th>
<th>Transmitância Solar (γ)</th>
<th>Refletância Solar (ρ)</th>
<th>Emissância Infravermelha (ε)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comum (1 mm)</td>
<td>0,05</td>
<td>0,87</td>
<td>0,08</td>
<td>0,90-0,95</td>
</tr>
<tr>
<td>Comum (3 mm)</td>
<td>0,07</td>
<td>0,85</td>
<td>0,08</td>
<td>0,90-0,95</td>
</tr>
<tr>
<td>Comum (4 mm)</td>
<td>0,11</td>
<td>0,81</td>
<td>0,08</td>
<td>0,90-0,95</td>
</tr>
<tr>
<td>Comum (8 mm)</td>
<td>0,27</td>
<td>0,65</td>
<td>0,08</td>
<td>0,90-0,95</td>
</tr>
<tr>
<td>Armado (3 mm)</td>
<td>0,65</td>
<td></td>
<td>0,90-0,95</td>
<td>1/22</td>
</tr>
<tr>
<td>Opálico (3 mm)</td>
<td>0,50</td>
<td></td>
<td>0,90-0,95</td>
<td>1/22</td>
</tr>
</tbody>
</table>

PERSIANAS VERTICAIS, CORTINAS DE ENROLAR E VENEZIANAS

<table>
<thead>
<tr>
<th>Material</th>
<th>Absortância Solar (α)</th>
<th>Transmitância Solar (γ)</th>
<th>Refletância Solar (ρ)</th>
<th>Emissância Infravermelha (ε)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical cor branca</td>
<td>0,23</td>
<td>0,00</td>
<td>0,77</td>
<td>4</td>
</tr>
<tr>
<td>De enrolar, leve (translúcido)</td>
<td>0,15</td>
<td>0,25</td>
<td>0,60</td>
<td>4</td>
</tr>
<tr>
<td>De enrolar, branca (opaca)</td>
<td>0,20</td>
<td>0,00</td>
<td>0,80</td>
<td>4</td>
</tr>
<tr>
<td>De enrolar, cor escura (opaca)</td>
<td>0,88</td>
<td>0,00</td>
<td>0,12</td>
<td>4</td>
</tr>
<tr>
<td>Veneziana; levemente colorida</td>
<td>0,40</td>
<td>0,05</td>
<td>0,53</td>
<td>4</td>
</tr>
<tr>
<td>Veneziana, medianum, colorida</td>
<td>0,60</td>
<td>0,05</td>
<td>0,35</td>
<td>4</td>
</tr>
</tbody>
</table>

Todos os valores da emissão que figuram na tabela foram medidos a temperaturas vizinhas à do ambiente (10 a 40 °C). Os valores da transmitância para os vidros são para incidência normal da radiação solar.
6.3 Tabela de Coeficientes para Cálculos Térmicos de Elementos Construtivos e/ou determinação do Conforto Térmico.

DADOS DA ÁGUA E DO AR

<table>
<thead>
<tr>
<th></th>
<th>Massa Específica (ρ)</th>
<th>Coeficientes de Condução (λ)</th>
<th>Calor Específico (c)</th>
<th>Difusividade (α)</th>
<th>Emisividade (β)</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Água</td>
<td>1000,0</td>
<td>0,604</td>
<td>4180</td>
<td>1,44</td>
<td>1589</td>
<td>Padeço</td>
</tr>
<tr>
<td>Ar</td>
<td>1,2</td>
<td>0,024</td>
<td>1012</td>
<td>198,00</td>
<td>5</td>
<td>Padrão</td>
</tr>
<tr>
<td>Gelo (-1 °C)</td>
<td>920,0</td>
<td>2,247</td>
<td>2260</td>
<td>10,81</td>
<td>2161</td>
<td>Padrão</td>
</tr>
</tbody>
</table>

CALORES LATENTES DA ÁGUA (Padrão)
- Calor latente de fusão da água: 334 kJ/kg = 80 kcal/kg
- Calor latente de evaporação da água: à temperatura de 20 °C = 2484 kJ/kg
- à temperatura de 30 °C = 2455 kJ/kg
- à temperatura de 100 °C = 2257 kJ/kg = 539 kcal/kg

RESISTÊNCIAS SUPERFICIAIS (Ref 21)

<table>
<thead>
<tr>
<th>Superfícies internas</th>
<th>Elemento da construção</th>
<th>Fluxo de calor</th>
<th>Emissividade da superfície</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Alta</td>
<td>Baixa</td>
</tr>
<tr>
<td>Paredes</td>
<td></td>
<td>0,123</td>
<td>0,304</td>
</tr>
<tr>
<td>Tetos ou pisos</td>
<td></td>
<td>0,106</td>
<td>0,218</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,150</td>
<td>0,562</td>
</tr>
<tr>
<td>Superfícies externas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,055</td>
<td>0,067</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,045</td>
<td>0,053</td>
</tr>
</tbody>
</table>

RESISTÊNCIA TÉRMICA DE ESPAÇOS COM AR (em m²°C/W) (Ref. 13)

<table>
<thead>
<tr>
<th>Espaço em mm</th>
<th>Emissividade das superfície</th>
<th>Fluxo de calor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Horizontal</td>
</tr>
<tr>
<td>Não ventilados</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Alta</td>
<td>0,015</td>
</tr>
<tr>
<td></td>
<td>Baixa</td>
<td>0,07</td>
</tr>
<tr>
<td>5</td>
<td>Alta</td>
<td>0,11</td>
</tr>
<tr>
<td></td>
<td>Baixa</td>
<td>0,22</td>
</tr>
<tr>
<td>10</td>
<td>Alta</td>
<td>0,15</td>
</tr>
<tr>
<td></td>
<td>Baixa</td>
<td>0,30</td>
</tr>
<tr>
<td>20 ou mais</td>
<td>Alta</td>
<td>0,17</td>
</tr>
<tr>
<td></td>
<td>Baixa</td>
<td>0,35</td>
</tr>
<tr>
<td>Ventilados</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Alta</td>
<td>0,17</td>
</tr>
<tr>
<td></td>
<td>Baixa</td>
<td>0,35</td>
</tr>
<tr>
<td>5</td>
<td>Alta</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Baixa</td>
<td>0,10</td>
</tr>
<tr>
<td>10</td>
<td>Alta</td>
<td>0,07</td>
</tr>
<tr>
<td></td>
<td>Baixa</td>
<td>0,14</td>
</tr>
<tr>
<td>20 ou mais</td>
<td>Alta</td>
<td>0,08</td>
</tr>
<tr>
<td></td>
<td>Baixa</td>
<td>0,16</td>
</tr>
</tbody>
</table>
7. TABELAS DE DESEMPENHO TÉRMICO DE CONJUNTOS DE MATERIAIS

Esta Seção apresenta resultados de simulações de desempenho térmico de conjuntos de materiais, utilizados como paredes. Como modelo de edificação para as simulações usou-se o mais simples possível: uma célula habitacional retangular de 12m², pé direito útil de 3m, piso e teto em laje de concreto (para se assemelhar também a um pavimento de prédio), telhado em quatro águas em telhas de barro tipo canal, excedendo em 80 cm o perímetro externo [Ref. 24 e 26]. A composição das paredes foi sendo variada gradativamente, começando pelos tijolos cerâmicos e blocos de concreto (pois é estimado que constituem em torno de 80% dos materiais utilizados na construção civil no Município de Rio de Janeiro), com seus revestimentos habituais. O clima escolhido para implantação do módulo de simulação foi o do bairro da Penha, no mês de fevereiro, um dos mais desfavoráveis do Rio de Janeiro frente ao calor.

O programa de computação de avaliação térmica usado foi o CASAMO CLIM [Ref 8]. Este programa trabalha com as variáveis que interferem no desempenho térmico do ambiente construído, listadas a seguir:

- Características Climáticas do Local, no mês em estudo: latitude, altitude, temperatura, umidade relativa do ar, ventos, intensidade de radiação solar;
- Orientação do Ambiente em Estudo em função do trajeto do sol, radiação incidente sobre os planos das fachadas e telhados, efeito de sombreamentos;
- Características da Construção: planta do ambiente construído, vãos e aberturas;
- Características Térmicas dos Materiais utilizados, e respectivos acabamentos;
- Perfil de Ocupação, quantidade provável de ocupantes e cargas internas geradas pela sua permanência (iluminação, equipamentos e seu próprio metabolismo).

Realizaram-se cálculos com dois perfis de ocupação: um Noturno (das 19 às 7 horas), destinado a representar, por exemplo, um dormitório de uma residência, e outro Diurno (das 7 às 19 horas), para avaliar uma área de estar diurna, sala de aula ou escritório. Os resultados das 40 simulações realizadas são apresentados junto com dados de composição de cada uma das paredes, acrescidos das informações mais relevantes, que são os seguintes:

- Índice De Qualidade - designado por uma letra, como explicado a seguir;
- Temperatura Média Noturna - Tm.N - temperatura média para o período de ocupação noturna;
- Temperatura Média Diurna - Tm.D - temperatura média para o período de ocupação diurna.

Simulações Realizadas

Os Tijolos Cerâmicos (de barro) foram tomados como uma primeira referencia; foram feitas 24 simulações para paredes com tijolos de 10 e 20 cm, com acabamento de argamassa em uma das faces e em ambas, com pintura (caiação) em uma das faces ou em ambas, acrescidos de revestimentos variados, pelo lado interno e pelo lado externo. Foram estudadas também, opções incluindo materiais isolantes, e câmaras de ar entre paredes duplas bem como o desempenho de Tijolos Maciços e Adobes (As primeiras 8 simulações consideram Tijolos Furados com acabamentos variados, cujas conclusões
pode ser estendidas ao Soocimento. As 4 seguintes, Tijolos Macios e Adobe, as simulações números 13 e 14 usaram Tijolos Furados, acrescidos com revestimento interno, da 15 à 19, Tijolos Furados, acrescidos com revestimento externo, e finalmente da 20 à 24, inclusão de Camada Isolante.

As duas simulações seguintes foram feitas para blocos de concreto vazados, com seu revestimento habitual e caiação que podem ser comparados às dos tijolos vazados, nas mesmas condições. A influência das opções de revestimento podem ser inferidas das respostas do grupo anterior. As simulações números 27 à 33 foram feitas para sistemas construtivos industrializados, envolvendo painéis de concreto armado convencional (27 e 28), argamassa armada (29 e 30) e concretos leves (31 à 33).

Na simulação 34 foi usada uma opção mista: composição de vigotas de concreto, entremeadas de tijolos furados. As simulações finais, de 35 à 40, foram destinadas a painéis "sandwich", compostos com materiais de baixa inércia: madeira, fibrocimento, poliuretano e camada de ar.

Assim como foi mencionado para as primeiras simulações, foi mantido constante, para todo o trabalho, o acabamento em pintura tipo caiação, afim de excluir das comparações a variável "cor" (exceto para painéis em madeira natural). Também, dada a semelhança de \(\alpha \) e \(\varepsilon \) para argamassa sem caiação, tijolos aparentes e pintura escuro, as respostas das simulações feitas para os dois primeiros foram estendidas para a última.

Classificação dos Resultados - Índice De Qualidade

Os resultados das simulações, foram classificados por suas **Temperaturas Resultantes**

Médias Noturnas (TmN), em quatro grupos de desempenho: o melhor desempenho corresponde a uma temperatura média menor:

<table>
<thead>
<tr>
<th>Classificação</th>
<th>para o intervalo</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>de 27,5 °C a 27,8 °C</td>
</tr>
<tr>
<td>B</td>
<td>de 27,8 °C a 28,1 °C</td>
</tr>
<tr>
<td>C</td>
<td>de 28,1 °C a 28,4 °C</td>
</tr>
<tr>
<td>D</td>
<td>de 28,4 °C a 28,7 °C</td>
</tr>
</tbody>
</table>

Uma segunda classificação foi realizada segundo as **Temperaturas Resultantes Médias Diurnas (TmD):**

<table>
<thead>
<tr>
<th>Classificação</th>
<th>para o intervalo</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>de 29,2 °C a 29,65 °C</td>
</tr>
<tr>
<td>A-</td>
<td>de 29,65 °C a 30,1 °C</td>
</tr>
<tr>
<td>B+</td>
<td>de 30,1 °C a 30,55 °C</td>
</tr>
<tr>
<td>B-</td>
<td>de 30,55 °C a 31 °C</td>
</tr>
<tr>
<td>C+</td>
<td>de 31 °C a 31,45 °C</td>
</tr>
<tr>
<td>C-</td>
<td>de 31,45 °C a 31,9 °C</td>
</tr>
<tr>
<td>D</td>
<td>acima de 31,9 °C</td>
</tr>
</tbody>
</table>

A análise dos resultados é apresentado nas Conclusões e Recomendações (Seção 8).
Simulação 1:

pintura branca interna $\alpha = 0.20$, $\varepsilon = 0.95$

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>λ (W/m°C)</th>
<th>ρ (kg/m³)</th>
<th>c (J/kg°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>argamassa de cimento</td>
<td>0.025</td>
<td>1.130</td>
<td>2000</td>
<td>800</td>
</tr>
<tr>
<td>tijolo furado</td>
<td>0.200</td>
<td>0.670</td>
<td>1250</td>
<td>880</td>
</tr>
<tr>
<td>argamassa de cimento</td>
<td>0.025</td>
<td>1.130</td>
<td>2000</td>
<td>800</td>
</tr>
</tbody>
</table>

pintura branca externa $\alpha = 0.20$, $\varepsilon = 0.95$

\[K_1 = 1.637 \text{ W/m}^2\text{°C} \]

AVALIAÇÃO

B

Tm.N = 27.88 °C

A-

Tm.D = 29.67 °C

Simulação 2:

pintura branca interna $\alpha = 0.20$, $\varepsilon = 0.95$

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>λ (W/m°C)</th>
<th>ρ (kg/m³)</th>
<th>c (J/kg°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>argamassa de cimento</td>
<td>0.025</td>
<td>1.130</td>
<td>2000</td>
<td>800</td>
</tr>
<tr>
<td>tijolo furado</td>
<td>0.100</td>
<td>0.670</td>
<td>1250</td>
<td>880</td>
</tr>
<tr>
<td>argamassa de cimento</td>
<td>0.025</td>
<td>1.130</td>
<td>2000</td>
<td>800</td>
</tr>
</tbody>
</table>

pintura branca externa $\alpha = 0.20$, $\varepsilon = 0.95$

\[K_2 = 2.419 \text{ W/m}^2\text{°C} \]

AVALIAÇÃO

B

Tm.N = 28.09 °C

A-

Tm.D = 29.77 °C
Simulação 3:

argamassa interna sem pintura $\alpha = 0,70 \quad \varepsilon = 0,90$

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>λ (W/m K)</th>
<th>ρ (kg/m³)</th>
<th>c (J/kg K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>argamassa de cimento</td>
<td>0,025</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
<tr>
<td>tijolo furado</td>
<td>0,100</td>
<td>0,670</td>
<td>1250</td>
<td>880</td>
</tr>
<tr>
<td>argamassa de cimento</td>
<td>0,025</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
</tbody>
</table>

argamassa externa sem pintura $\alpha = 0,70 \quad \varepsilon = 0,90$

$R_t = 2,419 \text{ W/m}^2\text{K}$

AVALIAÇÃO

D

Tm.N = 28,58°C

B-

Tm.D = 30,82°C

Simulação 4:

argamassa interna sem pintura $\alpha = 0,70 \quad \varepsilon = 0,90$

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>λ (W/m K)</th>
<th>ρ (kg/m³)</th>
<th>c (J/kg K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>argamassa de cimento</td>
<td>0,025</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
<tr>
<td>tijolo furado</td>
<td>0,100</td>
<td>0,670</td>
<td>1250</td>
<td>880</td>
</tr>
<tr>
<td>argamassa de cimento</td>
<td>0,025</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
</tbody>
</table>

pintura branca externa $\alpha = 0,20 \quad \varepsilon = 0,95$

$R_t = 2,419 \text{ W/m}^2\text{K}$

AVALIAÇÃO

C

Tm.N = 28,12°C

A-

Tm.D = 29,86°C
Simulação 5:

Pintura branca interna $\alpha = 0.20 \quad \varepsilon = 0.95$

<table>
<thead>
<tr>
<th>Parede</th>
<th>Espessura (m)</th>
<th>λ (W/m°C)</th>
<th>ρ (kg/m3)</th>
<th>c (J/kg°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>argamassa de cimento</td>
<td>0.025</td>
<td>1.130</td>
<td>2000</td>
<td>800</td>
</tr>
<tr>
<td>tijolo furado</td>
<td>0.100</td>
<td>0.670</td>
<td>1250</td>
<td>880</td>
</tr>
<tr>
<td>argamassa de cimento</td>
<td>0.025</td>
<td>1.130</td>
<td>2000</td>
<td>800</td>
</tr>
</tbody>
</table>

Argamassa externa sem pintura $\alpha = 0.70 \quad \varepsilon = 0.90$

$K_t = 2.419 \, \text{W/m°C}$

AVALIAÇÃO

D

$T_mN = 28,54°C$
$T_mD = 30,73°C$

Simulação 6:

Tijolo sem pintura interna $\alpha = 0.70 \quad \varepsilon = 0.90$

<table>
<thead>
<tr>
<th>Parede</th>
<th>Espessura (m)</th>
<th>λ (W/m°C)</th>
<th>ρ (kg/m3)</th>
<th>c (J/kg°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tijolo furado</td>
<td>0.100</td>
<td>0.670</td>
<td>1250</td>
<td>880</td>
</tr>
</tbody>
</table>

Tijolo sem pintura externa $\alpha = 0.70 \quad \varepsilon = 0.90$

$K_t = 2.703 \, \text{W/m°C}$

AVALIAÇÃO

C

$T_mN = 28,28°C$
$T_mD = 31,69°C$
Simulação 7:

- Tijolo com pintura interna \(\alpha = 0.70 \), \(\varepsilon = 0.90 \)

<table>
<thead>
<tr>
<th>Parede</th>
<th>Espessura (m)</th>
<th>(\lambda) (W/mK)</th>
<th>(\rho) (kg/m³)</th>
<th>(c) (j/kgK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tijolo furado</td>
<td>0.100</td>
<td>0.670</td>
<td>1250</td>
<td>880</td>
</tr>
<tr>
<td>Argamassa de cimento</td>
<td>0.025</td>
<td>1.130</td>
<td>2000</td>
<td>800</td>
</tr>
</tbody>
</table>

- Argamassa externa com pintura \(\alpha = 0.70 \), \(\varepsilon = 0.90 \)

\(K_1 = 2.553 \text{ W/mK} \)

AVALIAÇÃO

D

Tm.N = 28.41°C

C-

Tm.D = 31.46°C

Simulação 8:

- Argamassa interna com pintura \(\alpha = 0.70 \), \(\varepsilon = 0.90 \)

<table>
<thead>
<tr>
<th>Parede</th>
<th>Espessura (m)</th>
<th>(\lambda) (W/mK)</th>
<th>(\rho) (kg/m³)</th>
<th>(c) (j/kgK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argamassa de cimento</td>
<td>0.025</td>
<td>1.130</td>
<td>2000</td>
<td>800</td>
</tr>
<tr>
<td>Tijolo furado</td>
<td>0.100</td>
<td>0.670</td>
<td>1250</td>
<td>880</td>
</tr>
</tbody>
</table>

- Tijolo sem pintura externa \(\alpha = 0.70 \), \(\varepsilon = 0.90 \)

\(K_1 = 2.533 \text{ W/mK} \)

AVALIAÇÃO

D

Tm.N = 28.56°C

B-

Tm.D = 30.87°C
Simulação 9:

Tijolo sem pintura interna \(\alpha = 0.70 \), \(\varepsilon = 0.90 \)

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>(\lambda) (W/m°C)</th>
<th>(\rho) (kg/m³)</th>
<th>(c) (J/kg°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tijolo maciço</td>
<td>0.100</td>
<td>0.810</td>
<td>1600</td>
<td>920</td>
</tr>
</tbody>
</table>

\(K_t = 3.408 \text{ W/m}^2\text{°C} \)

AVALIAÇÃO

D

Tm.N = 28.57°C

Simulação 10:

Tijolo sem pintura interna \(\alpha = 0.70 \), \(\varepsilon = 0.90 \)

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>(\lambda) (W/m°C)</th>
<th>(\rho) (kg/m³)</th>
<th>(c) (J/kg°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tijolo maciço</td>
<td>0.200</td>
<td>0.810</td>
<td>1600</td>
<td>920</td>
</tr>
</tbody>
</table>

\(K_t = 2.199 \text{ W/m}^2\text{°C} \)

AVALIAÇÃO

D

Tm.N = 28.65°C

B-
Simulação 11:

Pintura branca interna $\alpha = 0,20$ $\varepsilon = 0,95$

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>λ: (W/m·K)</th>
<th>ρ: (kg/m3)</th>
<th>c: (J/kg·°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>estuque de cim. e areia</td>
<td>0,005</td>
<td>1,200</td>
<td>1800</td>
<td>840</td>
</tr>
<tr>
<td>argamassa de barro</td>
<td>0,020</td>
<td>0,520</td>
<td>1700</td>
<td>840</td>
</tr>
<tr>
<td>bloco de adobe</td>
<td>0,150</td>
<td>0,520</td>
<td>1700</td>
<td>840</td>
</tr>
<tr>
<td>argamassa de barro</td>
<td>0,020</td>
<td>0,520</td>
<td>1700</td>
<td>840</td>
</tr>
<tr>
<td>estuque de cim. e areia</td>
<td>0,005</td>
<td>1,200</td>
<td>1800</td>
<td>840</td>
</tr>
</tbody>
</table>

Pintura branca externa $\alpha = 0,20$ $\varepsilon = 0,95$.

$K_t = 1,837$ W/m2·K

AVALIAÇÃO

![Diagrama com classificação B e A+]

$T_{m.N} = 27,91°C$

$T_{m.D} = 29,57°C$

Simulação 12:

Pintura branca interna $\alpha = 0,20$ $\varepsilon = 0,95$

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>λ: (W/m·K)</th>
<th>ρ: (kg/m3)</th>
<th>c: (J/kg·°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tijolo maciço</td>
<td>0,200</td>
<td>0,810</td>
<td>1600</td>
<td>920</td>
</tr>
</tbody>
</table>

Pintura branca externa $\alpha = 0,20$ $\varepsilon = 0,95$

$K_t = 2,399$ W/m2·K

AVALIAÇÃO

![Diagrama com classificação B e A+]

$T_{m.N} = 28,09°C$

$T_{m.D} = 29,63°C$
Simulação 13:

madeira cor média interna $\alpha = 0.70$ $\varepsilon = 0.90$

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>λ_0 (W/m°C)</th>
<th>ρ (kg/m3)</th>
<th>c_ρ (j/kg°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>madeira média</td>
<td>0.015</td>
<td>0.150</td>
<td>600</td>
<td>1900</td>
</tr>
<tr>
<td>camada de ar</td>
<td>0.020</td>
<td>0.120</td>
<td>1</td>
<td>1012</td>
</tr>
<tr>
<td>argamassa de cimento</td>
<td>0.025</td>
<td>1.130</td>
<td>2000</td>
<td>800</td>
</tr>
<tr>
<td>tijolo furado</td>
<td>0.100</td>
<td>0.670</td>
<td>1250</td>
<td>880</td>
</tr>
<tr>
<td>argamassa de cimento</td>
<td>0.025</td>
<td>1.130</td>
<td>2000</td>
<td>1000</td>
</tr>
</tbody>
</table>

pintura branca externa $\alpha = 0.20$ $\varepsilon = 0.95$

AVALIAÇÃO

B

Tm.\(N\) = 27,89°C

B+

Tm.\(D\) = 30,29°C

Simulação 14:

cerâmica branca interna $\alpha = 0.35$ $\varepsilon = 0.90$

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>λ_0 (W/m°C)</th>
<th>ρ (kg/m3)</th>
<th>c_ρ (j/kg°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>azulejo (ladrihlo cerâmico)</td>
<td>0.003</td>
<td>1.150</td>
<td>1800</td>
<td>920</td>
</tr>
<tr>
<td>argamassa de cimento</td>
<td>0.020</td>
<td>1.130</td>
<td>2000</td>
<td>800</td>
</tr>
<tr>
<td>tijolo furado</td>
<td>0.100</td>
<td>0.670</td>
<td>1250</td>
<td>880</td>
</tr>
<tr>
<td>argamassa de cimento</td>
<td>0.025</td>
<td>1.130</td>
<td>2000</td>
<td>800</td>
</tr>
</tbody>
</table>

pintura branca externa $\alpha = 0.20$ $\varepsilon = 0.95$

AVALIAÇÃO

B

Tm.\(N\) = 28,08°C

A−

Tm.\(D\) = 30,02°C

35
Simulação 15:

Pintura branca interna $\alpha = 0.20 \quad \varepsilon = 0.95$

<table>
<thead>
<tr>
<th>Parede</th>
<th>Espessura (m)</th>
<th>λ (W/m°C)</th>
<th>ρ (kg/m3)</th>
<th>c (J/kg°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>argamassa de cimento</td>
<td>0,025</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
<tr>
<td>tijolo furado</td>
<td>0,100</td>
<td>0,670</td>
<td>1250</td>
<td>880</td>
</tr>
<tr>
<td>argamassa de cimento</td>
<td>0,020</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
<tr>
<td>revestimento cerâmico</td>
<td>0,008</td>
<td>1,150</td>
<td>1800</td>
<td>920</td>
</tr>
</tbody>
</table>

cerâmica branca externa $\alpha = 0.35 \quad \varepsilon = 0.90$

$Kt = 2,397 \text{ W/m°C}$

AVALiação

C

Tm.N = 28,23°C

A-

Tm.D = 30,07°C

Simulação 16:

Pintura branca interna $\alpha = 0.20 \quad \varepsilon = 0.95$

<table>
<thead>
<tr>
<th>Parede</th>
<th>Espessura (m)</th>
<th>λ (W/m°C)</th>
<th>ρ (kg/m3)</th>
<th>c (J/kg°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>argamassa de cimento</td>
<td>0,025</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
<tr>
<td>tijolo furado</td>
<td>0,100</td>
<td>0,670</td>
<td>1250</td>
<td>880</td>
</tr>
<tr>
<td>argamassa de cimento</td>
<td>0,020</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
<tr>
<td>pastilha (ladrilho cerâmico)</td>
<td>0,002</td>
<td>1,150</td>
<td>1800</td>
<td>920</td>
</tr>
</tbody>
</table>

cerâmica branca externa $\alpha = 0.35 \quad \varepsilon = 0.90$

$Kt = 2,332 \text{ W/m°C}$

AVALiação

C

Tm.N = 28,22°C

A--

Tm.D = 30,06°C
Simulação 17:

pintura branca interna $\alpha = 0,20 \quad \varepsilon = 0,95$

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>λ (W/m°C)</th>
<th>ρ (kg/m3)</th>
<th>c_v (J/kg°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>argamassa de cimento</td>
<td>0,025</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
<tr>
<td>tijolo furado</td>
<td>0,100</td>
<td>0,670</td>
<td>1250</td>
<td>880</td>
</tr>
<tr>
<td>argamassa de cimento</td>
<td>0,020</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
<tr>
<td>mármore branco</td>
<td>0,020</td>
<td>2,900</td>
<td>2600</td>
<td>840</td>
</tr>
</tbody>
</table>

mármore branco externo $\alpha = 0,40 \quad \varepsilon = 0,95$

$K_t = 2,404 \text{ W/m°C}$

AVALIAÇÃO

C

$\text{Tm.N} = 28,25°C$

$\text{Tm.D} = 30,14°C$

Simulação 18:

pintura branca interna $\alpha = 0,20 \quad \varepsilon = 0,95$

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>λ (W/m°C)</th>
<th>ρ (kg/m3)</th>
<th>c_v (J/kg°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>argamassa de cimento</td>
<td>0,025</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
<tr>
<td>tijolo furado</td>
<td>0,100</td>
<td>0,670</td>
<td>1250</td>
<td>880</td>
</tr>
<tr>
<td>argamassa de cimento</td>
<td>0,020</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
<tr>
<td>granito escuro</td>
<td>0,020</td>
<td>3,500</td>
<td>2800</td>
<td>840</td>
</tr>
</tbody>
</table>

granito escuro externo $\alpha = 0,70 \quad \varepsilon = 0,90$

$K_t = 2,409 \text{ W/m°C}$

AVALIAÇÃO

D

$\text{Tm.N} = 28,56°C$

$\text{Tm.D} = 30,81°C$

B-
Simulação 19:

- pintura branca interna $\alpha = 0.20$ $\varepsilon = 0.95$

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>λ: (W/m°C)</th>
<th>ρ: (kg/m³)</th>
<th>c: (j/kg°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>argamassa de cimento</td>
<td>0,025</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
<tr>
<td>tijolo furado</td>
<td>0,100</td>
<td>0,670</td>
<td>1250</td>
<td>880</td>
</tr>
<tr>
<td>argamassa de cimento</td>
<td>0,020</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
<tr>
<td>tijolo aparente (mac. prensado)</td>
<td>0,010</td>
<td>0,690</td>
<td>1600</td>
<td>840</td>
</tr>
</tbody>
</table>

tijolo externo $\alpha = 0.70$ $\varepsilon = 0.90$

Kt = 2,373 W/m²°C

AVALIAÇÃO

D

Tm.N = 28,53°C

B-

Tm.D = 30,69°C

Simulação 20:

- pintura branca interna $\alpha = 0.20$ $\varepsilon = 0.95$

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>λ: (W/m°C)</th>
<th>ρ: (kg/m³)</th>
<th>c: (j/kg°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>argamassa armada de cimento</td>
<td>0,020</td>
<td>1,500</td>
<td>2200</td>
<td>1000</td>
</tr>
<tr>
<td>isopor</td>
<td>0,050</td>
<td>0,032</td>
<td>15</td>
<td>1200</td>
</tr>
<tr>
<td>tijolo furado</td>
<td>0,100</td>
<td>0,670</td>
<td>1250</td>
<td>880</td>
</tr>
<tr>
<td>argamassa de cimento</td>
<td>0,025</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
</tbody>
</table>

pintura branca externa $\alpha = 0.20$ $\varepsilon = 0.95$

Kt = 0,545 W/m²°C

AVALIAÇÃO

A

Tm.N = 27,68°C

A-

Tm.D = 30,07°C
Simulação 21:

Pintura branca interna $\alpha = 0,20$ $\varepsilon = 0,95$

| Parede | espessura (m) | $\lambda_\text{(W/m°C)}$ | $\rho_\text{(kg/m}^3)$ | $c_\text{(J/kg°C)}$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>argamassa de cimento</td>
<td>0,025</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
<tr>
<td>tijolo furado</td>
<td>0,100</td>
<td>0,670</td>
<td>1250</td>
<td>880</td>
</tr>
<tr>
<td>isopor</td>
<td>0,050</td>
<td>0,032</td>
<td>15</td>
<td>1200</td>
</tr>
<tr>
<td>argamassa armada de cimento</td>
<td>0,020</td>
<td>1,500</td>
<td>2200</td>
<td>1000</td>
</tr>
</tbody>
</table>

Pintura branca externa $\alpha = 0,20$ $\varepsilon = 0,95$

$R_t = 0,545 \text{ W/m°C}$

AVALIAÇÃO

A

Tm.N = 27,63°C

A+

Tm.D = 29,24°C

Simulação 22:

Pintura branca interna $\alpha = 0,20$ $\varepsilon = 0,95$

| Parede | espessura (m) | $\lambda_\text{(W/m°C)}$ | $\rho_\text{(kg/m}^3)$ | $c_\text{(J/kg°C)}$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>argamassa de cimento</td>
<td>0,020</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
<tr>
<td>isopor</td>
<td>0,020</td>
<td>0,032</td>
<td>15</td>
<td>1200</td>
</tr>
<tr>
<td>concreto armado</td>
<td>0,100</td>
<td>1,750</td>
<td>2400</td>
<td>1000</td>
</tr>
<tr>
<td>isopor</td>
<td>0,020</td>
<td>0,032</td>
<td>15</td>
<td>1200</td>
</tr>
<tr>
<td>argamassa de cimento</td>
<td>0,020</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
</tbody>
</table>

Pintura branca externa $\alpha = 0,20$ $\varepsilon = 0,95$

$R_t = 0,712 \text{ W/m°C}$

AVALIAÇÃO

A

Tm.N = 27,66°C

A−

Tm.D = 29,69°C
Simulação 23:

pintura branca interna $\alpha = 0.20$, $\varepsilon = 0.95$

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>λ (W/m°C)</th>
<th>ρ (kg/m3)</th>
<th>c (J/kg°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>argamassa de cimento</td>
<td>0,025</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
<tr>
<td>tijolo furado</td>
<td>0,100</td>
<td>0,670</td>
<td>1250</td>
<td>880</td>
</tr>
<tr>
<td>camada de ar</td>
<td>0,050</td>
<td>0,290</td>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>tijolo furado</td>
<td>0,100</td>
<td>0,670</td>
<td>1250</td>
<td>880</td>
</tr>
<tr>
<td>argamassa de cimento</td>
<td>0,025</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
</tbody>
</table>

pintura branca externa $\alpha = 0.20$, $\varepsilon = 0.95$

AVALIAÇÃO

A
Tm N = 27,78°C

A-
Tm D = 29,71°C

Simulação 24:

pintura branca interna $\alpha = 0.20$, $\varepsilon = 0.95$

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>λ (W/m°C)</th>
<th>ρ (kg/m3)</th>
<th>c (J/kg°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>argamassa de cimento</td>
<td>0,025</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
<tr>
<td>tijolo furado</td>
<td>0,100</td>
<td>0,670</td>
<td>1250</td>
<td>880</td>
</tr>
<tr>
<td>camada de ar c/ alumínio</td>
<td>0,050</td>
<td>0,140</td>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>tijolo furado</td>
<td>0,100</td>
<td>0,670</td>
<td>1250</td>
<td>880</td>
</tr>
<tr>
<td>argamassa de cimento</td>
<td>0,025</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
</tbody>
</table>

pintura branca externa $\alpha = 0.20$, $\varepsilon = 0.95$

AVALIAÇÃO

A
Tm N = 27,68°C

A-
Tm D = 29,75°C
Simulação 25:

Pintura branca interna $\alpha = 0,20 \quad \varepsilon = 0,95$

<table>
<thead>
<tr>
<th>Parede</th>
<th>Espessura (m)</th>
<th>λ (W/m·K)</th>
<th>ρ (kg/m³)</th>
<th>c_v (kJ/kg·K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reboco de gesso</td>
<td>0,005</td>
<td>0,490</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Bloco de concreto furado</td>
<td>0,100</td>
<td>1,280</td>
<td>1450</td>
<td>1000</td>
</tr>
<tr>
<td>Argamassa de cimento</td>
<td>0,015</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
</tbody>
</table>

Pintura branca externa $\alpha = 0,20 \quad \varepsilon = 0,95$

Avaliação

![Imagem de avaliação]

C

$T_m N = 28,19^\circ C$

B+

$T_m D = 30,16^\circ C$

Simulação 26:

Pintura branca interna $\alpha = 0,20 \quad \varepsilon = 0,95$

<table>
<thead>
<tr>
<th>Parede</th>
<th>Espessura (m)</th>
<th>λ (W/m·K)</th>
<th>ρ (kg/m³)</th>
<th>c_v (kJ/kg·K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloco de concreto furado</td>
<td>0,100</td>
<td>1,280</td>
<td>1450</td>
<td>1000</td>
</tr>
</tbody>
</table>

Pintura branca externa $\alpha = 0,20 \quad \varepsilon = 0,95$

Avaliação

![Imagem de avaliação]

B

$T_m N = 28,10^\circ C$

B+

$T_m D = 30,36^\circ C$
Simulação 27:

pintura branca interna \(\alpha = 0,20 \quad \varepsilon = 0,95 \)

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>(\lambda) (W/m(^\circ)C)</th>
<th>(\rho) (kg/m(^3))</th>
<th>(c) (J/kg (^\circ)C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>concreto armado</td>
<td>0,120</td>
<td>1,750</td>
<td>2400</td>
<td>1000</td>
</tr>
</tbody>
</table>

pintura branca externa \(\alpha = 0,20 \quad \varepsilon = 0,95 \)

\(K_t = 4,192 \text{ W/m}^2\text{\(^\circ\)C} \)

AVALIAÇÃO

D

Tm.N = 28,44\(^\circ\)C

Tm.D = 30,00\(^\circ\)C

Simulação 28:

pintura branca interna \(\alpha = 0,20 \quad \varepsilon = 0,95 \)

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>(\lambda) (W/m(^\circ)C)</th>
<th>(\rho) (kg/m(^3))</th>
<th>(c) (J/kg (^\circ)C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>concreto armado</td>
<td>0,060</td>
<td>1,750</td>
<td>2400</td>
<td>1000</td>
</tr>
</tbody>
</table>

pintura branca externa \(\alpha = 0,20 \quad \varepsilon = 0,95 \)

\(K_t = 4,895 \text{ W/m}^2\text{\(^\circ\)C} \)

AVALIAÇÃO

B

B-

Tm.N = 28,04\(^\circ\)C

Tm.D = 30,61\(^\circ\)C
Simulação 29:

Pintura branca interna $\alpha = 0,20 \quad \varepsilon = 0,95$

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>λ (W/m°C)</th>
<th>ρ (kg/m³)</th>
<th>c (j/kg °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>argamassa armada de cimento</td>
<td>0,025</td>
<td>1,500</td>
<td>2200</td>
<td>1000</td>
</tr>
</tbody>
</table>

Pintura branca externa $\alpha = 0,20 \quad \varepsilon = 0,95$

Kt = 5,357 W/m²°C

AVALIAÇÃO

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C+</td>
</tr>
<tr>
<td>Tm.N = 27,56°C</td>
<td>Tm.D = 31,19°C</td>
</tr>
</tbody>
</table>

Simulação 30:

Pintura branca interna $\alpha = 0,20 \quad \varepsilon = 0,95$

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>λ (W/m°C)</th>
<th>ρ (kg/m³)</th>
<th>c (j/kg °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>argamassa armada de cimento</td>
<td>0,025</td>
<td>1,500</td>
<td>2200</td>
<td>1000</td>
</tr>
<tr>
<td>câmara de ar ventilada</td>
<td>0,050</td>
<td>0,620</td>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>argamassa armada de cimento</td>
<td>0,025</td>
<td>1,500</td>
<td>2200</td>
<td>1000</td>
</tr>
</tbody>
</table>

Pintura branca externa $\alpha = 0,20 \quad \varepsilon = 0,95$

Kt = 4,360 W/m²°C

AVALIAÇÃO

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>B-</td>
</tr>
<tr>
<td>Tm.N = 27,92°C</td>
<td>Tm.D = 30,67°C</td>
</tr>
</tbody>
</table>
Simulação 31:

Pintura branca interna $\alpha = 0.20 \quad \varepsilon = 0.95$

<table>
<thead>
<tr>
<th>Parede</th>
<th>Espessura (m)</th>
<th>λ (W/m°C)</th>
<th>ρ (kg/m3)</th>
<th>c (J/kg°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>argamassa de cimento</td>
<td>0.010</td>
<td>1.130</td>
<td>2000</td>
<td>800</td>
</tr>
<tr>
<td>concreto com isopor</td>
<td>0.080</td>
<td>0.350</td>
<td>900</td>
<td>1200</td>
</tr>
<tr>
<td>argamassa de cimento</td>
<td>0.025</td>
<td>1.130</td>
<td>2000</td>
<td>800</td>
</tr>
</tbody>
</table>

Pintura branca externa $\alpha = 0.20 \quad \varepsilon = 0.95$

Kt $= 2.355$ W/m2°C

AVALIAÇÃO

B

Tm.N = 28.02°C
Tm.D = 30.02°C

Simulação 32:

Pintura branca interna $\alpha = 0.20 \quad \varepsilon = 0.95$

<table>
<thead>
<tr>
<th>Parede</th>
<th>Espessura (m)</th>
<th>λ (W/m°C)</th>
<th>ρ (kg/m3)</th>
<th>c (J/kg°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>argamassa de cimento</td>
<td>0.010</td>
<td>1.130</td>
<td>2000</td>
<td>800</td>
</tr>
<tr>
<td>concreto - argila expandida</td>
<td>0.080</td>
<td>1.050</td>
<td>1700</td>
<td>960</td>
</tr>
<tr>
<td>argamassa de cimento</td>
<td>0.020</td>
<td>1.130</td>
<td>2000</td>
<td>800</td>
</tr>
</tbody>
</table>

Pintura branca externa $\alpha = 0.20 \quad \varepsilon = 0.95$

Kt $= 3.673$ W/m2°C

AVALIAÇÃO

C

Tm.N = 28.24°C
Tm.D = 30.05°C
Simulação 33:

pintura branca interna $\alpha = 0,20$ $\varepsilon = 0,95$

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>λ: $(W/m^\circ C)$</th>
<th>ρ: (kg/m^3)</th>
<th>c: $(j/kg \cdot ^\circ C)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>argamassa de cimento</td>
<td>0,010</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
<tr>
<td>concreto celular</td>
<td>0,100</td>
<td>0,130</td>
<td>550</td>
<td>960</td>
</tr>
<tr>
<td>argamassa de cimento</td>
<td>0,020</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
</tbody>
</table>

pintura branca externa $\alpha = 0,20$ $\varepsilon = 0,95$

AVALIAÇÃO

A

Tm.N = 27,74°C

B+

Tm.D = 30,17°C

Simulação 34:

pintura branca interna $\alpha = 0,20$ $\varepsilon = 0,95$

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>λ: $(W/m^\circ C)$</th>
<th>ρ: (kg/m^3)</th>
<th>c: $(j/kg \cdot ^\circ C)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>argamassa de cimento</td>
<td>0,010</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
<tr>
<td>concreto - tijolo furado</td>
<td>0,080</td>
<td>0,670</td>
<td>1300</td>
<td>950</td>
</tr>
<tr>
<td>argamassa de cimento</td>
<td>0,010</td>
<td>1,130</td>
<td>2000</td>
<td>800</td>
</tr>
</tbody>
</table>

pintura branca externa $\alpha = 0,20$ $\varepsilon = 0,95$

AVALIAÇÃO

C

Tm.N = 28,16°C

A-

Tm.D = 30,04°C
Simulação 35:

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>λ (W/m·K)</th>
<th>ρ (kg/m³)</th>
<th>c (J/kg·K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fibrocimento</td>
<td>0,006</td>
<td>0,600</td>
<td>1900</td>
<td>840</td>
</tr>
<tr>
<td>madeira dura</td>
<td>0,043</td>
<td>0,200</td>
<td>800</td>
<td>1900</td>
</tr>
<tr>
<td>fibrocimento</td>
<td>0,006</td>
<td>0,600</td>
<td>1900</td>
<td>840</td>
</tr>
</tbody>
</table>

pintura branca interna $\alpha = 0,20 \quad \varepsilon = 0,95$

$K_t = 2,495 \, \text{W/m·K}$

AVALIAÇÃO

A

Tm.N = 27,78°C

B-

Tm.D = 30,59°C

Simulação 36:

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>λ (W/m·K)</th>
<th>ρ (kg/m³)</th>
<th>c (J/kg·K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pinho</td>
<td>0,020</td>
<td>0,150</td>
<td>500</td>
<td>2400</td>
</tr>
</tbody>
</table>

natural interna $\alpha = 0,60 \quad \varepsilon = 0,95$

$K_t = 3,297 \, \text{W/m·K}$

AVALIAÇÃO

B

Tm.N = 28,01°C

D

Tm.D = 33,97°C
Simulação 37:

natural interna $\alpha = 0,70 \quad \varepsilon = 0,90$

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>λ (W/m$^\circ$C)</th>
<th>ρ (kg/m3)</th>
<th>c (J/kg$^\circ$C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>madeira média</td>
<td>0,008</td>
<td>0,150</td>
<td>600</td>
<td>1900</td>
</tr>
<tr>
<td>camada de ar</td>
<td>0,035</td>
<td>0,200</td>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>madeira dura</td>
<td>0,008</td>
<td>0,200</td>
<td>800</td>
<td>1900</td>
</tr>
</tbody>
</table>

natural externa $\alpha = 0,70 \quad \varepsilon = 0,90$

Kt = 2,450 W/m²$^\circ$C

AVALIAÇÃO

A

Tm.N = 27,71$^\circ$C

D

Tm.D = 32,67$^\circ$C

Simulação 38:

natural interna $\alpha = 0,70 \quad \varepsilon = 0,90$

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>λ (W/m$^\circ$C)</th>
<th>ρ (kg/m3)</th>
<th>c (J/kg$^\circ$C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>madeira média</td>
<td>0,008</td>
<td>0,150</td>
<td>600</td>
<td>1900</td>
</tr>
<tr>
<td>camada de ar c/ alumínio</td>
<td>0,035</td>
<td>0,100</td>
<td>1</td>
<td>1012</td>
</tr>
<tr>
<td>madeira dura</td>
<td>0,008</td>
<td>0,200</td>
<td>800</td>
<td>1900</td>
</tr>
</tbody>
</table>

natural externa $\alpha = 0,70 \quad \varepsilon = 0,90$

Kt = 1,30 W/m²$^\circ$C

AVALIAÇÃO

A

Tm.N = 27,68$^\circ$C

D

Tm.D = 32,13$^\circ$C
Simulação 39:

natural interna $\alpha = 0.70 \quad \varepsilon = 0.90$

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>λ (W/m°C)</th>
<th>ρ (kg/m3)</th>
<th>c (J/kg°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>madeira média</td>
<td>0.008</td>
<td>0.150</td>
<td>600</td>
<td>1900</td>
</tr>
<tr>
<td>poliuretano</td>
<td>0.035</td>
<td>0.023</td>
<td>24</td>
<td>1600</td>
</tr>
<tr>
<td>madeira dura</td>
<td>0.008</td>
<td>0.200</td>
<td>800</td>
<td>1900</td>
</tr>
</tbody>
</table>

natural externa $\alpha = 0.70 \quad \varepsilon = 0.90$

$K_t = 0.795 \text{ W/m°C}$

AVALIAÇÃO

A

$T_m.N = 27.65°C$

C-

$T_m.D = 31.80°C$

Simulação 40:

pintura branca interna $\alpha = 0.20 \quad \varepsilon = 0.95$

<table>
<thead>
<tr>
<th>Parede</th>
<th>espessura (m)</th>
<th>λ (W/m°C)</th>
<th>ρ (kg/m3)</th>
<th>c (J/kg°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>madeira média</td>
<td>0.008</td>
<td>0.150</td>
<td>600</td>
<td>1900</td>
</tr>
<tr>
<td>poliuretano</td>
<td>0.035</td>
<td>0.023</td>
<td>24</td>
<td>1600</td>
</tr>
<tr>
<td>madeira dura</td>
<td>0.008</td>
<td>0.200</td>
<td>800</td>
<td>1900</td>
</tr>
</tbody>
</table>

pintura branca externa $\alpha = 0.20 \quad \varepsilon = 0.95$

$K_t = 0.795 \text{ W/m°C}$

AVALIAÇÃO

A

$T_m.N = 27.52°C$

C+

$T_m.D = 31.08°C$
8. CONCLUSÕES E RECOMENDAÇÕES

Com esta publicação dispõe-se agora de uma listagem dos parâmetros térmicos de todos os materiais de construção mais usuais em nosso meio, o que permite inferir o comportamento térmico das construções realizadas com estes materiais, seja por meio de cálculos diretos aproximados ou utilizando-os em programas comerciais de computação, para cálculo de desempenho térmico de prédios.

Como exemplo, as simulações apresentadas na Seção 7, feitas para situação de verão, cujos resultados permitem inferir que:

1) Os materiais de muita capacidade térmica (muita massa e grande calor específico) são mais adequados aos cômodos permanência diurna, enquanto que os de pouca capacidade térmica são mais indicados para os de ocupação noturna. Isto significa que o aspecto "ocupação" deveria merecer uma atenção maior do que muitas vezes lhe é dada, incluindo o cuidado de uma análise estatística para obras de grande vulto. Observe, por exemplo, as diferenças entre os resultados das simulações 10 e 27, com bom desempenho durante o dia, com os das 29 e 37, de melhor desempenho térmico noturno.

2) O valor do Coeficiente Geral de Troca de Calor "Kt" de uma parede é uma indicação do seu desempenho térmico que deve, no entanto, ser complementado pela ordem de utilização dos materiais, o que se pode verificar pela diferença dos resultados apresentados pelas simulações 20 e 21 (Isopor por dentro, e por fora dos tijolos).

3) A pintura clara, de preferência branca tem uma influência maior do que pode parecer à primeira vista, principalmente em se tratando de material de grande capacidade térmica. Vale comparar os resultados das simulações 2 com 3, (tijolos furados) e 10 com 12 (tijolos maciços). A influência da pintura é menor quando se utiliza material de baixa difusividade "a" (com maior isolamento térmico, comparar os resultados das simulações 39 e 40), e tanto menor quanto maior "a" (por exemplo, maior espessura do isolante).

4) Com relação à inércia térmica cabe apontar que materiais com menor difusividade "a" devem ser colocados nas paredes mais castigadas pelo sol, para retardar a chegada da onda de temperatura, e que materiais com maior efusividade "b" serão posicionados nas paredes divisórias internas, sendo seu efeito o de diminuir a variação da temperatura do ar interior do cômodo.

É interessante salientar, também, que um ambiente situado no andar térreo apresenta menor variação de temperatura, uma vez que o andar superior contribui para atenuar a influência dos parâmetros climáticos aos quais está sujeita a cobertura. Esta mesma vantagem é apresentada pelas paredes protegidas por muita vegetação ou obstáculos que interferem na chegada do sol.

5) A cor clara tem influência quando utilizada pela face externa e também pela face interna, sendo a primeira, como seria previsível, muito mais importante que a segunda. (ver resultados das simulações 4 e 5). O comentário vale para pintura e também para materiais em sua cor natural (ver simulações 17 e 18).
6) Câmara de ar usada como isolante tem pouco efeito entre materiais de grande capacidade térmica. O desempenho de uma parede com tijolos furados de 20 cm é praticamente o mesmo do que o de duas paredes de 10 cm separadas por camada de ar (ver simulações 1, 23 e 24).

7) Câmaras de ar funcionam, no entanto, para separar duas camadas de materiais de menor capacidade térmica, como se pode verificar nas simulações feitas para argamassa armada e madeira. Vale acrescentar, que o efeito de material isolante como o poliuretano é ainda mais eficaz (comparar simulações 29, 30 e 37, 38, 39).

8) A introdução de uma folha de alumínio (que tem baixo coeficiente de emissão) na câmara de ar, ao contrário do que acontece quando se utiliza ar condicionado, não resiste a uma avaliação custo benefício (ver simulações 37 e 38).

9) A utilização de materiais isolantes é fortemente indicada para ambientes com climatização artificial. Porém, quando não se condiciona artificialmente o ar, o uso de materiais isolantes não pode ser indiscriminado. Deve ser lembrado que eles impedem o calor de entrar, mas também o impedem de sair. A solução mais adequada para seu uso e disposição, deve encontrar um equilíbrio entre os ganhos e as perdas de calor, visto que seu desempenho varia conforme as condições de uso, de ocupação, de ventilação do ambiente, de sombreamento das janelas, etc.

10) Verificou-se que, em situação de verão, a redução da ventilação natural diurna e o aumento da ventilação noturna, provocam uma redução da temperatura média interna, em qualquer período de ocupação. É interessante notar que a abertura de uma janela quando a temperatura exterior está mais alta que a interna, pode provocar, pela ventilação, um efeito agradável momentâneo, que ira prejudicar o conforto interno mais tarde, pela carga térmica acrescida ao ambiente. (*)

11) Consequentemente, percebe-se que a ventilação é um fator da maior importância para o melhoramento do conforto térmico, e que o usuário, sendo alertado para o fato, pode contribuir para seu próprio benefício, manuseando de forma adequada as aberturas de portas e janelas. Esta é também uma recomendação válida para ser lembrada em edifícios com ventilação controlada.

12) Somando-se a influência das cargas térmicas resultantes da reflexão em construções vizinhas, e do entorno ao ambiente construído às observações feitas sobre a importância da ventilação, não podemos concluir este trabalho, sem lembrar que uma arquitetura adequada ao clima necessita, por sua vez, de um urbanismo orientado neste sentido, por exemplo, que os arruamentos e taxas de ocupação permitam o livre fluxo dos ventos dominantes e a arborização das calçadas.

(*) Além das simulações apresentadas, foram feitas outras, com várias opções (differentes taxas) de ventilação, e contatou-se, como era previsível, que esta redução acontece sempre, mas não na mesma proporção para todos os materiais, o que se explica pela diferente capacidade dos mesmos, de armazenar energia térmica. Em linhas gerais, no entanto, a qualificação apresentada não se alterou.
APÊNDICE I

CARACTERIZAÇÃO CLIMÁTICA DA CIDADE DO RIO DE JANEIRO

TABELAS E GRÁFICOS DE DADOS CLIMÁTICOS
Zona Norte: As dificuldades encontradas pelas brisas litorâneas de chegar a esta parte da cidade, devido à posição dos maciços, torna mais "abafada" que outras, situadas junto ao litoral. Os bairros de Cascadura, Méier, Engenho de Dentro, todos antigos "subúrbios" da Central, com grande concentração urbana, são os mais aringados, apresentando uma média anual em torno dos 23,8 °C (Penha) e 23,4 °C (Engenho de Dentro) e a média das máximas em torno dos 31,3 °C (Penha) e 32,4°C (Engenho de Dentro), mostrando ser uma das regiões mais quentes da cidade, perdendo apenas para Bangü. A umidade relativa média anual é mais baixa que nas demais partes da cidade (com exceção também de Bangü), em torno dos 77%, e a poluição do ar bem alta, contribuindo a aumentar o desconforto térmico. As médias das mínimas durante o inverno também são razoavelmente altas, mostrando uma menor variação entre as temperaturas médias do verão e do inverno, já que estas mínimas ficam em 16,6 °C (Penha) e 16,7 °C (Engenho de Dentro) e a umidade relativa também não varia muito durante o ano. Já a Tijuca e o Alto da Tijuca possuem um clima mais ameno devido à sua posição geográfica, mas não tanto quanto a dos bairros da Zona Sul e principalmente os da orla e dos maciços.

Estação Engenho de Dentro - Clima classificado como seco e sub-úmido com pequeno ou nenhum excesso de água pelo método de Thornthwaite.
Zona Sul: é por onde entram as frentes polares que atingem o Estado, causando nesta data grandes variações térmicas e ventos de intensidade fortes provenientes do sul. Nas condições normais é uma das áreas de melhor ventilação da cidade, principalmente em sua orla, devido às brisas de mar e terrestre que atingem esta parte da cidade durante todo o ano (durante o dia soprando da terra para o mar e durante a noite com direção inversa), com maior intensidade durante o verão. A temperatura média fica em torno dos 23,2 °C e a média das máximas durante o verão 29,8 °C, um valor expressivamente alto, que pode ser justificado levando-se em consideração o enorme crescimento urbano dessa área da cidade, o qual, como já foi tratado na introdução, pode aumentar estes valores em até 1 °C (o que, tratando-se de médias, é um valor altamente relevante). Já a média das mínimas durante o inverno fica em torno de 17,6 °C, mostrando que existe uma grande variação térmica entre as estações extremas. A umidade relativa fica alta e sem grandes variações durante o ano todo, com média anual de 82%. Nos bairros diretamente afetados pelo relevo, como Jardim Botânico, a média das mínimas mostra um valor menor, 15,7 °C, o que também deve acontecer nas áreas próximas a orla.

Estação Ipanema - Clima classificado como úmido e subúmido com pequena ou nenhuma deficiência de água pelo método de Thornthwaite.

Estações de Laranjeiras e Jardim Botânico

* Média das máximas no verão: 29,8 °C.
* Média anual compensada: 23,2 °C.
* Média das mínimas no inverno: 17,6 °C.
* Umidade relativa anual média: 83%
Estação Flamengo

Janeiro Fevereiro Março Abril

Maio Junho Julho Agosto

Setembro Outubro Novembro Dezembro

Ventos

Diurno Noturno

% Percentagem de Calmaria.

Cada milímetro medido a partir do centro do círculo corresponde a um dia de medições com vento predominante nesta direção.

*Os dados da estação do Flamengo (1982-1991) possuem uma série consistente mas diferente das demais, com o vento medido em número de dias observados em uma determinada direção e sem informação de sua intensidade.
Maciços: Podem ser considerados como formando parte dos Maciços, os morros acima de 200m de altitude, tais como Morro dos Cabritos, Saudade, Babilônia, Corcovado, Urca e Pão de Açúcar, além do Alto da Boa Vista e os Maciços da Pedra Branca e Gerinó, que apresentam características climáticas semelhantes. Tal como foi colocado na Introdução deste trabalho, é nos maciços onde encontramos as temperaturas mais amenas da cidade. O rigor do verão é amenizado, sendo a média das máximas durante o verão em torno de 29,1°C (Alto da Boa Vista), 29,7°C (Urca) e 28,5°C (Pão de Açúcar). Dentro das características dos Maciços, podemos destacar as menores médias das mínimas durante o inverno na cidade, 15,4°C (Alto da Boa Vista), 16,4°C (Urca) e 15,8°C (Pão de Açúcar), e também as menores médias compensadas anuais, em torno dos 21,1°C (Alto da Boa Vista). Infelizmente nenhuma das extintas estações meteorológicas deste Maciços possuem dados completos de umidade relativa. Podemos supor porém, pelas características climáticas e geográficas dos maciços mostradas na Introdução, que a umidade relativa deve também apresentar valores anuais elevados com uma média em torno dos 80%.

Estações do Alto da Boa Vista, Urca e Pão de Açúcar.

- Média das máximas no verão: 29,1°C.
- Média anual compensada: 21,2°C.
- Média das mínimas no inverno: 15,8°C.
Estação Urca

Janeiro Fevereiro Março Abril

8% 7% 8% 8%

Maio Junho Julho Agosto

5% 4% 8% 8%

Setembro Outubro Novembro Dezembro

7% 5% 8% 7%

Frequência

(% de incidência de vento nesta direção)

- 1ª Frequência
- 2ª Frequência

Cada centímetro medido a partir do centro do círculo corresponde a 10% de frequência com vento predominante nesta direção.

% % Percentagem de Calmaria.

Velocidade

1 m/s 2 m/s 3 m/s 4 m/s 5 m/s 6 m/s

Direção

(Indica a direção de origem do vento)

N O L S

Os dados desta estação foram registrados no período 1930-1942. Não existem registros horários que possibilitariam sua separação em ventos diurnos e noturnos.
A3.4. BAIXADA DE SANTA CRUZ E BANGU

Baixada de Santa Cruz e Bangú: Com exceção da parte litorânea de Santa Cruz, o seu interior e a baixada de Bangú possuem características climáticas bem parecidas, com uma temperatura média anual de 23,8 °C para Bangú e 23,4 °C para Santa Cruz e as maiores médias das máximas durante todo o ano da cidade, sendo a média das máximas observada durante o verão na estação Santa Cruz em torno dos 32,2 °C e em Bangú em torno dos 33,0 °C. A umidade relativa média anual em Bangú é a menor da cidade, aproximadamente 75%, o que pode ser explicado pela sua posição Geográfica localizada entre os Maciços da Pedra Branca Gericino, causando situações climáticas desconfortáveis para a população, principalmente no verão. As frequentes calmarias, geram estagnação do movimento de ar, causando a sensação de "abafamento" maior ainda que a dos bairros da Zona Norte estimulando também uma grande concentração de poluição. Já Santa Cruz também possui temperaturas elevadas e uma umidade relativa muito baixa com relação a outros bairros da cidade, mas em sua parte próxima ao litoral a mínima absoluta pode chegar a valores inferiores a 10 °C, possui uma média das mínimas durante o inverno em torno dos 17,5 °C, e em Bangú 17,0 °C.

Estação Bangú - classificado como úmido e sub-úmido com pequena ou nenhuma deficiência de água pelo método de Tornthwaite.

Estações de Bangu e Santa Cruz

*Média das máximas no verão: 32,6 °C.
*Média anual compensada: 23,6 °C.
*Média das mínimas no inverno: 17,2 °C.
*Umidade relativa anual média: 75%
Estação Santa Cruz

Janeiro Fevereiro Março Abril

Maio Junho Julho Agosto

Setembro Outubro Novembro Dezembro

Frequência
(% de incidência de vento nesta direção)

1ª Frequência 2ª Frequência

Cada centímetro medido a partir da origem corresponde a 10% de frequência com vento predominante nesta direção.

% % Percentagem de Calmaria.

Velocidade

3 m/s 4 m/s 5 m/s 6 m/s

Direção
(Indica a direção de origem do vento)

Os dados desta estação foram registrados no período 1960-1978. Não existem registros horários que possibilitariam sua separação em ventos diurnos e noturnos.
Baixada de Jacarepaguá: Assim como a Zona Sul, apresenta uma significativa variação entre a região oceânica (Barra da Tijuca e vizinhanças) e o seu interior. Esta parte da cidade é uma das mais carentes em informações meteorológicas, contando apenas com dados extremos. A média das máximas durante o verão fica em torno dos 32,3 °C e a média das mínimas durante o inverno em torno dos 17,1 °C, assemelhando-se, em termos climatológicos com os bairros da zona norte, sendo que os bairros do interior da Baixada de Jacarepaguá possuem uma temperatura máxima média maior que as da estação da Penha e menor que as da estação do Engenho de Dentro.

Os bairros próximos ao litoral e aos lagos possuem temperaturas mais amenas, devido principalmente às brisas do mar e terrestre e a que não há entradas de frentes frias polares nesta parte do litoral.

* Média das máximas no verão: 32,3 °C.
* Média das mínimas no inverno: 17,1 °C.
Ilhas (Paquetá e Ilha do Governador): A análise climatológica das ilhas da cidade do Rio de Janeiro fica restrita a estas duas, devido a que só existem dados climatológicos nestes locais, sendo que os dados da Ilha do Governador apresentam séries confiáveis apenas no que diz respeito às ventos. Estas Ilhas, apesar de sua posição privilegiada junto ao oceano, possuem temperaturas bem elevadas durante o verão (média das máximas no verão em Paquetá 31,6 °C) e uma média compensada anual de 23,4 °C, valores que podem ser comparados inclusive com os dados da zona norte. Estas temperaturas elevadas são devido a sua posição ao fundo da baía, conferindo-lhes um caráter quase continental. A proximidade com o mar se faz sentir na elevada umidade relativa média anual, em torno dos 81,3%, e na temperatura média das mínimas durante o inverno, aproximadamente 15,7 °C, assemelhando-se com as demais localidades próximas ao mar, como na orla da Zona Sul e orla da Baixada de Jacarepaguá, mas com um inverno um pouco mais rigoroso.

Estação Paquetá

*Média das máximas no verão: 31,6 °C.
*Média anual compensada: 23,4 °C.
*Média das mínimas no inverno: 15,7 °C.
*Umidade relativa anual média: 81%

Os dados citados no texto se referem somente à estação de Paquetá.
Estação Cepel (Ilha do Fundão)

Janeiro Fevereiro Março Abril

Maio Junho Julho Agosto

Setembro Outubro Novembro Dezembro

Ventos

Diurno

Noturno

Velocidade

- 1 m/s
- 2 m/s
- 3 m/s

Direção

(lêga a direção de origem do vento)

Cada milímetro medido a partir do centro do círculo corresponde a um dia de medições com vento predominante nesta direção.

Os dados desta estação foram registrados no período 1982-1996. Apesar de que os registros são efetuados de 1 em 10 minutos, a informação subministrada é a média diurna e a noturna, e não as frequências diurnas e noturnas, que seriam mais úteis para o projeto arquitetônico bioclimático.
Estação Paquetá

<table>
<thead>
<tr>
<th></th>
<th>Janeiro</th>
<th>Fevereiro</th>
<th>Março</th>
<th>Abril</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>85%</td>
<td>88%</td>
<td>85%</td>
<td>89%</td>
</tr>
<tr>
<td>Maio</td>
<td>92%</td>
<td>86%</td>
<td>85%</td>
<td>89%</td>
</tr>
<tr>
<td>Junho</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Julho</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agosto</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setembro</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outubro</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Novembro</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dezembro</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>85%</td>
<td>85%</td>
<td>78%</td>
<td>84%</td>
</tr>
</tbody>
</table>

Frequência

(% de incidência de vento nesta direção)

- **1ª Frequência**
- **2ª Frequência**

Cada centímetro medido a partir do centro do círculo corresponde a 10% de frequência com vento predominante nesta direção.

- **%** % Percentagem de Calmaria.

Os dados desta estação foram registrados no período 1945-1957. Não existem registros horários que possibilitariam sua separação em ventos diurnos e noturnos.
MÉDIAS MENSais DE
HORAS DE BRILHO SOLAR "n"
E DE
RADIAÇÃO SOLAR EM PLANO HORIZONTAL "H"
CONSOLIDADAS NO PERÍODO 1978-1989 (Ref. 27)

<table>
<thead>
<tr>
<th></th>
<th>Horas de sol</th>
<th>Radiação Solar</th>
<th>Radiação Solar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>h/dia</td>
<td>kJ/m2dia</td>
<td>kWh/m2dia</td>
</tr>
<tr>
<td>JAN</td>
<td>13,23</td>
<td>41802,67</td>
<td>11,61</td>
</tr>
<tr>
<td>FEV</td>
<td>12,76</td>
<td>39573,61</td>
<td>10,99</td>
</tr>
<tr>
<td>MAR</td>
<td>12,14</td>
<td>36467,83</td>
<td>9,85</td>
</tr>
<tr>
<td>ABR</td>
<td>11,46</td>
<td>29873,35</td>
<td>8,30</td>
</tr>
<tr>
<td>MAI</td>
<td>10,90</td>
<td>24866,09</td>
<td>6,91</td>
</tr>
<tr>
<td>JUN</td>
<td>10,62</td>
<td>22405,12</td>
<td>6,22</td>
</tr>
<tr>
<td>JUL</td>
<td>10,75</td>
<td>23446,70</td>
<td>6,51</td>
</tr>
<tr>
<td>AGO</td>
<td>11,23</td>
<td>27618,03</td>
<td>7,67</td>
</tr>
<tr>
<td>SET</td>
<td>11,90</td>
<td>33134,15</td>
<td>9,20</td>
</tr>
<tr>
<td>OUT</td>
<td>12,58</td>
<td>38027,14</td>
<td>10,56</td>
</tr>
<tr>
<td>NOV</td>
<td>13,13</td>
<td>41079,39</td>
<td>11,41</td>
</tr>
<tr>
<td>DEZ</td>
<td>13,39</td>
<td>42256,82</td>
<td>11,74</td>
</tr>
</tbody>
</table>

n média = 5,62 H média = 16602,55 H média = 4,61

Médias Anuais
n (m.a.) = 2046 h/ano H (m.a.) = 6050,12 Mj/m2ano = 1680,59 kWh/m2ano

onde: N = número máximo teórico de horas de brilho solar, média mensal.
Ho = energia solar diária no topo da atmosfera, média mensal, sobre plano horizontal

INSOLAÇÃO DIÁRIA MÉDIA MENSAL

![Graph showing daily insolation values](image-url)
APÊNDICE 2

SÍMBOLOS, UNIDADES, EQUIVALENCIAS
E TABELAS AUXILIARES
SÍMBOLOS, UNIDADES E EQUIVALENCIAS

UNIDADES - Do Sistema Internacional

<table>
<thead>
<tr>
<th>Grandeza</th>
<th>Unidade</th>
<th>Símbolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprimento</td>
<td>metro</td>
<td>m</td>
</tr>
<tr>
<td>Superfície</td>
<td>metro quadrado</td>
<td>m²</td>
</tr>
<tr>
<td>Massa</td>
<td>quilograma</td>
<td>kg</td>
</tr>
<tr>
<td>Tempo</td>
<td>segundo</td>
<td>s</td>
</tr>
<tr>
<td>Força</td>
<td>newton</td>
<td>N (= kg.m/s²)</td>
</tr>
<tr>
<td>Trabalho, energia ou calor</td>
<td>joule</td>
<td>J (= N.m)</td>
</tr>
<tr>
<td>Potência</td>
<td>watt</td>
<td>W (= J/s)</td>
</tr>
<tr>
<td>Temperatura</td>
<td>grau absoluto ou Kelvin</td>
<td>K</td>
</tr>
</tbody>
</table>

Prefixos decimais em uso para múltiplos ou submúltiplos das unidades

<table>
<thead>
<tr>
<th>Prefixo</th>
<th>Fator n de 10ⁿ</th>
<th>Símbolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>tera</td>
<td>12</td>
<td>T</td>
</tr>
<tr>
<td>giga</td>
<td>9</td>
<td>G</td>
</tr>
<tr>
<td>mega</td>
<td>6</td>
<td>M</td>
</tr>
<tr>
<td>quilo</td>
<td>3</td>
<td>k</td>
</tr>
<tr>
<td>hecto</td>
<td>2</td>
<td>h</td>
</tr>
<tr>
<td>deca</td>
<td>1</td>
<td>d</td>
</tr>
<tr>
<td>deci</td>
<td>-1</td>
<td>c</td>
</tr>
<tr>
<td>centi</td>
<td>-2</td>
<td>m</td>
</tr>
<tr>
<td>milí</td>
<td>-3</td>
<td>m</td>
</tr>
<tr>
<td>micro</td>
<td>-6</td>
<td>m</td>
</tr>
<tr>
<td>nano</td>
<td>-9</td>
<td>n</td>
</tr>
</tbody>
</table>

Outras unidades de uso comum

<table>
<thead>
<tr>
<th>Grandeza</th>
<th>Unidade</th>
<th>Símbolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprimento</td>
<td>polegada</td>
<td>pol. (in.)</td>
</tr>
<tr>
<td></td>
<td>pé</td>
<td>pé (ft.)</td>
</tr>
<tr>
<td></td>
<td>milha</td>
<td>milha (mile)</td>
</tr>
<tr>
<td>Superfície</td>
<td>polegada quadrada</td>
<td>pol²</td>
</tr>
<tr>
<td></td>
<td>pé quadrado</td>
<td>pé²</td>
</tr>
<tr>
<td>Massa</td>
<td>libra</td>
<td>lb</td>
</tr>
<tr>
<td>Tempo</td>
<td>hora</td>
<td>h</td>
</tr>
<tr>
<td></td>
<td>mês</td>
<td>mês</td>
</tr>
<tr>
<td></td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td>Força</td>
<td>quilograma-força</td>
<td>kgf</td>
</tr>
<tr>
<td></td>
<td>libra-força</td>
<td>lbf</td>
</tr>
<tr>
<td></td>
<td>tonelada</td>
<td>Ton.</td>
</tr>
<tr>
<td>Trabalho, energia ou calor</td>
<td>quilowatt-hora</td>
<td>kWh</td>
</tr>
<tr>
<td></td>
<td>caloría</td>
<td>cal</td>
</tr>
<tr>
<td></td>
<td>kilocaloria</td>
<td>kcal</td>
</tr>
<tr>
<td></td>
<td>British thermal units</td>
<td>Btu</td>
</tr>
<tr>
<td>Potência ou Transferência de energia</td>
<td>kilocaloria/hora</td>
<td>kcal/h</td>
</tr>
<tr>
<td></td>
<td>horse-power</td>
<td>HP</td>
</tr>
<tr>
<td></td>
<td>Btu/hora</td>
<td>Btu/h</td>
</tr>
<tr>
<td>Temperatura</td>
<td>grau Centígrado</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>grau Fahrenheit</td>
<td>°F</td>
</tr>
</tbody>
</table>
CONVERSÃO DE UNIDADES

Comprimento
1 pol = 0,02544 m
1 pé = 0,3048 m
1 milha = 1,609 km

Área
1 pé² = 0,0929 m²
1 pol² = 0,0006452 m²
1 hectare = 10⁴ m²
1 km² = 100 hectare

Volume
1 litro = 10⁻³ m³
1 pé³ = 0,02832 m³

Massa
1 lb = 0,4536 kg

Pressão
1 bar = 10⁵ Pa = 760 mmHg
1 psi = 6,89476 kPa
1 mmH₂O = 9,81 Pa
1 mmHg = 1 torr
1 atm. = 101,325 Pa
1 Pa (Pascal) = 1 N/m²

Força
1 kgf = 9,81 N
1 lbf = 4,44822 N

Energia
1 kWh = 3,6 Mj
1 kWh = 860 kcal
1 Btu = 1,055 kj = 252 cal
1 kcal = 4,1868 kJ

Potência ou Transferência de energia
1 cal/s = 4,1868 W
1 kcal/h = 1,163 W
1 Btu/h = 0,293 W
1 HP = 746 W
1 ton refriger. = 3,517 kW
1 met = 50 kcal/h/m² = 58,2 W/m²

Temperatura (relação entre graus Kelvin, centígrados e Fahrenheit)
Temperatura em K (grau Kelvin) = Temperatura em °C + 273
Conhecendo X °F, se pode calcular Y °C = \(5 \times \frac{X-32}{9}\)
Conhecendo Z °C, se pode calcular W °F = \(9 \times Z/5 + 32\)
VALORES DA RESISTÊNCIA TÉRMICA OFERECIDA PELA ROUPA (*)

Os valores estão dados na unidade de resistência da roupa chamada de “Clo”:
1 clo = 0,155 m² °C/W

<table>
<thead>
<tr>
<th>Para Mulheres</th>
<th>Para Homens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcinha e soutien</td>
<td>Cuecas</td>
</tr>
<tr>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Meia-calça</td>
<td>Meias</td>
</tr>
<tr>
<td>0,01</td>
<td>0,03</td>
</tr>
<tr>
<td>Corpete</td>
<td>Meias de lã</td>
</tr>
<tr>
<td>0,04</td>
<td>0,04</td>
</tr>
<tr>
<td>Anáguas leve</td>
<td>Camiseta sem mangas</td>
</tr>
<tr>
<td>0,13</td>
<td>0,06</td>
</tr>
<tr>
<td>Blusa leve sem mangas</td>
<td>Camisa leve mangas curtas</td>
</tr>
<tr>
<td>0,14</td>
<td>0,14</td>
</tr>
<tr>
<td>Blusa leve com mangas</td>
<td>Camisa leve mangas compridas</td>
</tr>
<tr>
<td>0,20</td>
<td>0,19</td>
</tr>
<tr>
<td>Vestido leve</td>
<td>Camisa pesada mangas curtas</td>
</tr>
<tr>
<td>0,17</td>
<td>0,25</td>
</tr>
<tr>
<td>Vestido pesado</td>
<td>Camisa pesada mangas compridas</td>
</tr>
<tr>
<td>0,63</td>
<td>0,29</td>
</tr>
<tr>
<td>Saia pesada</td>
<td>Paletó de verão</td>
</tr>
<tr>
<td>0,22</td>
<td>0,32</td>
</tr>
<tr>
<td>Saia</td>
<td>Paletó de inverno</td>
</tr>
<tr>
<td>0,13</td>
<td>0,49</td>
</tr>
<tr>
<td>Mini-saia</td>
<td>Gravata</td>
</tr>
<tr>
<td>0,06</td>
<td>0,20</td>
</tr>
</tbody>
</table>

Ambos os sexos

- Camiseta (T-shirt) 0,09
- Calça leve 0,26
- Sweater leve 0,17
- Saída de banho (ou Robe) 0,31
- Sandálias 0,02
- Corpete ginástica (ou blusão) 0,20
- Cassação 0,49
- Shorts 0,06
- Calça pesada 0,36
- Sweater pesado 0,37
- Pijamas de verão 0,20
- Sapatos 0,04
- Calças ginástica 0,15
- Botas 0,10

Valores indicativos para Conjuntos

- Conjunto tropical para verão (cueca, short, camisa leve manga curta aberta no colo, sandália) 0,3
- Conjunto desportivo (cueca, calças leves, camisa leve manga curta aberta no colo, sapatos, meias) 0,5
- Traje de verão (cueca, calça e paletó leves, camisa mangas compridas, gravata, meias, sapatos) 0,8
- Traje de inverno brasileiro (idem anterior com calça e paletós mais pesados, colete e camiseta) 1,0
- Traje de inverno europeu 1,5
- Idem com sobretudo, guantes e chapéu 2,0

(*) Os valores foram tomados das referências 28, 29 e 30.
Influência da atividade na energia térmica dissipada por uma pessoa, por metro quadrado de pele (*)

<table>
<thead>
<tr>
<th>Atividade</th>
<th>W/m²</th>
<th>met (**)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Em repouso</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dormindo</td>
<td>40</td>
<td>0,7</td>
</tr>
<tr>
<td>Reclinado, relaxado</td>
<td>45</td>
<td>0,8</td>
</tr>
<tr>
<td>Sentado, quieto</td>
<td>60</td>
<td>1,0</td>
</tr>
<tr>
<td>Parado, relaxado</td>
<td>70</td>
<td>1,2</td>
</tr>
<tr>
<td>Parado, em alerta</td>
<td>80</td>
<td>1,4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Caminhando, ou correndo, em plano horizontal</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a 3 km/h (a 0,83 m/s)</td>
<td>110</td>
<td>1,9</td>
</tr>
<tr>
<td>a 5 km/h (a 1,34 m/s)</td>
<td>165</td>
<td>2,8</td>
</tr>
<tr>
<td>a 7 km/h (a 1,94 m/s)</td>
<td>240</td>
<td>4,1</td>
</tr>
<tr>
<td>a 9 km/h (a 2,50 m/s)</td>
<td>340</td>
<td>5,9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atividades de escritório</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lendo, sentado</td>
<td>55</td>
<td>0,9</td>
</tr>
<tr>
<td>Escrevendo</td>
<td>60</td>
<td>1,0</td>
</tr>
<tr>
<td>Batendo a máquina</td>
<td>65</td>
<td>1,1</td>
</tr>
<tr>
<td>Ordenando papéis, sentado</td>
<td>70</td>
<td>1,2</td>
</tr>
<tr>
<td>Ordenando papéis, sentado</td>
<td>80</td>
<td>1,4</td>
</tr>
<tr>
<td>Ordenando papéis, sentado</td>
<td>100</td>
<td>1,7</td>
</tr>
<tr>
<td>Distribuindo pacotes ou empacotando</td>
<td>120</td>
<td>2,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dirigindo</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carro</td>
<td>60-115</td>
<td>1,0-2,0</td>
</tr>
<tr>
<td>Avião, rotina</td>
<td>70</td>
<td>1,2</td>
</tr>
<tr>
<td>Avião, com instrumentos</td>
<td>105</td>
<td>1,8</td>
</tr>
<tr>
<td>Avião, em combate</td>
<td>140</td>
<td>2,4</td>
</tr>
<tr>
<td>Veículo pesado</td>
<td>185</td>
<td>3,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atividades várias, trabalho</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cozinhando</td>
<td>95-115</td>
<td>1,6-2,0</td>
</tr>
<tr>
<td>Limando a casa</td>
<td>115-200</td>
<td>2,0-3,4</td>
</tr>
<tr>
<td>Sentado, com movimento dos membros</td>
<td>130</td>
<td>2,2</td>
</tr>
<tr>
<td>Trabalho com uma máquina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serrando uma tábua</td>
<td>105</td>
<td>1,8</td>
</tr>
<tr>
<td>Leve (indústria elétrica)</td>
<td>115-140</td>
<td>2,0-2,4</td>
</tr>
<tr>
<td>Pesado</td>
<td>235</td>
<td>4,1</td>
</tr>
<tr>
<td>Segurando pacotes de 50 kg</td>
<td>235</td>
<td>4,1</td>
</tr>
<tr>
<td>Quebrando e empurrando pedras</td>
<td>235-280</td>
<td>4,0-4,8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atividades várias, lazer</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dançando, social</td>
<td>140-255</td>
<td>2,4-4,4</td>
</tr>
<tr>
<td>Ginástica leve</td>
<td>175-235</td>
<td>3,0-4,0</td>
</tr>
<tr>
<td>Ténis, single</td>
<td>210-270</td>
<td>3,6-4,0</td>
</tr>
<tr>
<td>Basquete</td>
<td>290-440</td>
<td>5,0-7,6</td>
</tr>
<tr>
<td>Luta, competitiva</td>
<td>410-505</td>
<td>7,0-8,7</td>
</tr>
</tbody>
</table>

Superfície da pele de uma pessoa = 0,202 x (seu peso em kg)\(^{0.425}\) x (sua altura em m)\(^{0.725}\)
(Area de Dubois, o resultado é em m\(^2\), ref. 27)

(*) Valores adaptados das referências 21 e 31.
(***) 1 met = 50 kcal/h/m\(^2\) = 58,2 W/m\(^2\)
APÊNDICE 3

REFERÊNCIAS BIBLIOGRÁFICAS DOS DADOS APRESENTADOS
9 - Catálogos dos Fabricantes.
15 - British Standards, CIBS Guide. Chatered Institute of Building Services, UK.
APÉNDICE 4

BIBLIOGRAFIA RECOMENDADA
BIBLIOGRAFIA RECOMENDADA

Bibliografia geral, livros e anais de conferências, sobre aspectos térmicos em
arquitetura bioclimática

- ANTAC - Anais dos quatro Encontros Nacionais de Conforto no Ambiente
 Construído.
- Butera, Federico, Corbella, Oscar D. e Yannas, Simos (Editores) Interaction
 between Physics and Environment Conscious Architecture I, ICTP, 1987. em
 Solar and Wind Tech., Vol6, No. 4, 1989.
- Butera, Federico, Corbella, Oscar D. e De Carli, Ana (Editores) Interaction
 publicados por ENEA, Roma, 1990.
- Evans, J. Martin e de Schiller, Silvia, Diseño Bioambiental y Arquitectura Solar,
- Givoni, Baruch - Man, Climate and Architecture. Applied Science Pu. Ltda,
- Givoni, Baruch - Passive and Low Energy Cooling of Building. Van Nostrand
- Goulding, John R., Owen Lewis, J. e Steemers, Theo C. (Editores)- Energy in
- Markus, Thomas A. e Morris, E. N. , Buildings, Climate and Energy, Pitman Pu.
- PLEA - Anais das Conferencias Internacionais da Organização PLEA (Passive
- Puppo, Ernesto e Puppo, Giorgio A., Acondicionamiento Natural y Arquitectura,
- Serra i Florenza, Rafael, Clima, Lugar y Arquitectura, CIEMAT, Madrid, 1989.