
177

CADERNOS

18

CADERNOS

18

MARIA GABRIELA CELANI E CARLOS EDUARDO VAZ

CAD scripting and visual parametric
modeling environments: a comparison
from a pedagogical point of view

178

CADERNOS

18

Maria Gabriela Celani Architect and MArch from the

School of Architecture and Urbanism of the University

of São Paulo (FAU-USP), PhD from Massachusetts In-

stitute of Technology (MIT), lecturer at the University

of Campinas (Unicamp) and Post-doctorate from the

Technical University of Lisbon. She is a researcher and

lecturer at the Architecture and Urbanism Faculty at

Unicamp, where coordinates the Laboratory of Au-

tomation and Prototyping for Architecture and Con-

struction (LAPAC) and the research group ‘Contem-

porary Theories and Technologies Applied to Design’.

gabi.celani @ gmail.com

Carlos Eduardo Vaz Graduated in Architecture from

the University of São Paulo (2003) and finished his MA

and PhD in Civil Engineering from the State University

of Campinas (UNICAMP). He is currently an associ-

ate professor at the Federal University of Pernambuco,

working in the Department of Graphic Expression.

cevv00@gmail.com

CAD scripting and visual parametric modeling environments:
a comparison from a pedagogical point of view

MARIA GABRIELA CELANI E CARLOS EDUARDO VAZ

179

CADERNOS

18

ABSTRACT

This paper compares the use of visual parametric modeling environments and CAD

scripting languages for teaching computational design concepts to novice architecture

students. Both systems are described and categorized in terms of the representation

method they use. An analogy between visual parametric modeling environments and

visual programming languages is proposed and the literature about VPL’s is reviewed.

The comparison is also based on the practical results of a course in which a scripting

language and a parametric modeling environment were used for a parametric design

exercise. In the second case the learning curve was steeper, the designs developed were

more complex, and students developed a better understanding of generative design

concepts and the use of computer tools for design exploration. Although we must take

into account the characteristics of the specific tools used in this comparison, it is possi-

ble to conclude that the use of visual parametric modeling environments can help in-

troducing computational concepts to novice architecture students with no background

in programming, preparing the ground for the introduction of more abstract methods.

The paper also discusses the importance of the ability to shift between different re-

presentation methods, from the more concrete to the more abstract, as part of the

architectural education.

Keywords: Script Languages. Parametric modeling. Representation method. Teaching.

CAD scripting and visual parametric modeling environments:
a comparison from a pedagogical point of view

MARIA GABRIELA CELANI E CARLOS EDUARDO VAZ

180

CADERNOS

18

Introduction

The insertion of new technologies in the architectural education has been a

subject targeted by long discussions and publications, as well as the theme

of many conferences, especially the ones starting in the 1980s, when com-

puters became more accessible both for students and universities. The cen-

tral question of those debates progressively evolved from the introduction of

simple representation software to programming that can be fully integrated to

the design process, allowing the generation and exploration of solutions (Mark,

Martens & Oxman, 2001). The interest in generating software is becoming more

evident after the beginning of digital manufacturing machines use in the archi-

tectural field, promoting the creation of free forms in such a way not possible

before that.

Generative design systems were described by Mitchell (1975) in his article The

theoretical foundations of computer-aided architectural design, as devices that were

capable of generating potential solutions for a design problem. The most im-

portant strategies of the generative design are: combinations, substitutions,

parameterization, context restrictions, contingency, emergence, optimization,

and the combination of two or more of them (Celani, 2008).

Generative systems, conversely to the common sense, do not need to be nec-

essarily implemented in a computer, but may be used to accomplish repeti-

tive tasks that would consume much time otherwise. Before the 1980s, these

systems were hardly implemented in computers, not only because highly

specialized skills in programming were necessary, but also for the high costs

of hardware that should have an appropriate graphic interface and a high

memory capacity.

Mitchell, Ligget and Kvan (1987) prepared one of the first guides for the imple-

mentation of computer aided-design systems. Their book The art of computer-

graphics programming, which suggests Pascal as the programming language

for the routines development. Schmitt (1988), Coates and Thum (1995), Celani

(2003) and Teridis (2006) organized other computer-aided design guides. Each

of these books proposes different generative strategies. All of them are based

in the existing CAD software script languages and take advantage of the geo-

metric functions present in these software. Their main objective is to introduce

computational concepts to undergraduate and graduate students in architec-

ture (Celani, 2008).

Nevertheless, subjects with this type of content are rarely mandatory in the Ar-

chitecture school, and it is possible to affirm that few architecture students are

ready to accept the challenge of learning a programming language. The reasons

for this difficulty are yet to be proved, but it is possible to speculate that students

believe that programming is complicated, this activity is not related to the pro-

fessional practice, and it is not the type of knowledge an Architect must have.

CAD scripting and visual parametric modeling environments:
a comparison from a pedagogical point of view

MARIA GABRIELA CELANI E CARLOS EDUARDO VAZ

181

CADERNOS

18

Even when Architecture students learn a programming language, most of them

will not use this skill to express his design ideas. This happens, in the first

place, because in order to develop a computer program a certain experience

is necessary – it is a time consuming activity. Secondly, sketches are still con-

sidered the main – if not the only one – method for producing the preliminary

design ideas.

It is impossible to deny the drawing role in the creative process, a theme that

is largely studied by many scholars (ROBBINS, 1997). Therefore, if we consider

the design process as an activity that involves the combination of distinct pos-

sibilities, the computer may assume an important role by allowing the system-

atic and exhaustive generation of design alternatives.

Recently, some CAD packages introduced tools with parametric models genera-

tive capabilities that do not demand to its users a symbolic code elaboration.

These programs use visual programming to create diagrams that will represent

the algorithm to generate the parametric model. Normally, this type of soft-

ware allows a limited automation of the design project, but it can be efficient

to explore forms, by means of automatic generating parametric variations. The

majority of these programming environments allow the creation of algorithms

without the use of a symbolic code, and their capabilities can be extended

through the use of scripts.

Objectives and Methods

The objective of this research is to assess the use of tools that are founded in

different computing paradigms: text programming languages and visual pro-

gramming languages. In this sense, programming concepts were introduced to

students and, from that point, they had to develop exercises using two different

tools: algorithm editor Grasshopper and script language VBA. Along their tasks,

students had to prepare algorithms that were capable to insert components

as lines and sides or to create complex forms. These compositions had to be

modeled indirectly by the students. Therefore, they should either create codes

or structure a symbolic diagram to automatically insert or enable changes in

components instanced by students.

In order to make this research feasible, the student’s works from classes of dif-

ferent years that had the subject “CAD in the Creative Process” are compared.

Works that were developed through the use of visual parametric modeling en-

vironments (Grasshopper) belong only to the group that was in the 2010 class.

The other works presented belong to previous years’ classes that were still us-

ing the script VBA language.

The criteria used to analyze the results were based on the student’s ability

to assimilate programming concepts and forms generation. Despite the fact

CAD scripting and visual parametric modeling environments:
a comparison from a pedagogical point of view

MARIA GABRIELA CELANI E CARLOS EDUARDO VAZ

182

CADERNOS

18

that students learned the same contents, when utilizing the new CAD tool they

developed tasks in which they were able to respond to a design problem. The

result was completely different in relation to previous years, when, in most

cases, students could only instance lines and forms, but not answer to a spe-

cific problem.

Script Languages and the Visual Parametric
Modeling Environment

CAD software script languages can vary deeply, not only in terms of its syntax

and structure, but also in relation to the possible results obtained with their

application. Some examples of CAD software programming languages are Rhi-

noscript by Rhinoceros, MEL by Maya, MaxScript by 3DMax and VBA or Autolisp

by AutoCAD. For the comparison proposed in this study, VBA by AutoCAD was

used as an objects-oriented language. Scripts (also called macros in VBA) may

be developed using Visual Basic for Application Interactive Development Envi-

ronment (VBAIDE), a software that is part of the Microsoft Office package (such

as Word or Excel), as well as AutoCAD.

Although script VBA is not a compiled language and does not allow the cre-

ation of new classes of objects or autonomous applications, it is a powerful

tool to automatize operations in AutoCAD. Its development environment al-

lows easy and intuitively interface elaboration, which represents a big advan-

tage over AutoLisp.

The language contains the typical structure of conditionals (if-then-else) and

looping (for-each, for-next, do-while, select-case, go-to) present in any other

programming language. The routines may be grouped in functions or sub-rou-

tines. The syntax is similar to the other object oriented languages, also known

as dot syntax, in which a dot after the object’s name is used to access its prop-

erties (for example, line.color = red) and hooks its methods followed by its pa-

rameters (for example: line.move frompoint, topoint).

For this type of syntax’s use it is important to know the AutoCAD objects model,

a hierarchical structure that shows how groups and classes of objects interact.

For example, Model Space is considered a group in which certain types of ob-

jects can be found, such as lines, polylines, 3dsolids etc. It is recommended (but

not mandatory) that a VBA routine be initiated with the variables definition,

including its type specification (such as numbers, words or AutoCAD entities)

and the definition of its accessibility mode (public or private). VBA uses arrays

(matrixes) to store data, such as a dot’s coordinates x, y and z. Because it is a

very structured language, its teaching requires the introduction of various pro-

gramming concepts, even for the development of very simple programs.

CAD scripting and visual parametric modeling environments:
a comparison from a pedagogical point of view

MARIA GABRIELA CELANI E CARLOS EDUARDO VAZ

183

CADERNOS

18

To exemplify the use of VBA for AutoCAD, a macro model that inserts paramet-

ric lines with a simple interface using scrollbars it is presented below. Figure

1 shows the user interface and the corresponding code in VBAIDE. The user

uploads the macro using the AutoCAD editor and the interface automatically

appears in the desktop. It is possible to change scrollbar’s values, altering the

initial points coordinates and the final line that will be generated in AutoCAD’s

editing window. In order to create a new result, the program must be reloaded.

The interface may also have a button to erase the line. The code for imple-

menting this routine is very simple. Numerical values for coordinates x and y

for each of the points (1 and 2) are given and then a line object is instanced in

AutoCAD’s Model Space.

FIGURE 1

Example of a simple
interface created in

VBAIDE and its VBA code.

(Source: adapted from
Kwok e Grondzik, 2007)

It is possible to execute something very similar in some parametric modeling

environments with visual programming resources with no need of typing even

one code line in text. Instead of presenting an interface to write lines in a com-

piler, these programs contain a desktop where components that will compose

the “code” to accomplish the task may be introduced.

Two examples of this type of software are: Generative Components (GC) and

Grasshopper. The former is a Microstation software module by Bentley, while

the latter is a plug-in for Rhinoceros, a software designed by McNeil corpora-

tion. The symbolic diagram of GC is described as:

A view of the geometric and non-geometric features you are placing, in graph form.
The features are capsules with the feature type noted underneath the feature name.
(…) The lines connecting the features show any dependencies between features.
The arrows show the direction of the dependency. The Symbolic Diagram visually
expresses dependencies that may not be as apparent in the Geometric view, but which
influence other dependent features and so the behaviors of the whole model. (Bentley
Institute, 2008, p.13)

CAD scripting and visual parametric modeling environments:
a comparison from a pedagogical point of view

MARIA GABRIELA CELANI E CARLOS EDUARDO VAZ

184

CADERNOS

18

FIGURE 2

Diagram for a line
drawing: Rhinoceros

window to the left
and Grasshopper

canvas to the right.

(Source: authors)

In Grasshopper, the area for the preparation of diagrams is called canvas and

it is defined as “…the actual editor where you define and edit the history net-

work. The Canvas hosts the objects that make up the definition” (Payne & Issa,

2009, p.5).

In both cases, the geometry is developed diagrammatically. Thus, it is not stored

in a usual geometric models file, but in a special type of file called transaction file

in GC and definition file in Grasshopper. A transaction file:

Contains the instructions that will generate geometry. When you open one in
Generative Components, you see the working environment. It is comprised of the
Generative Components dialog, the Symbolic Diagram and a Geometric view. (Bentley
Institute, 2008, p.13).

Figure 2 show the diagram prepared in Grasshopper to represent a parameter-

ized line, similar to the previous example developed in VBA. The representation

is composed by scrollbars where the user may define coordinate values x and

y of the initial and final points of a line. Each is represented in the canvas by

a component that generates them in the Rhinoceros desktop. These compo-

nents visually resemble batteries, with input connectors to the left and output

results to the right. The components that generate points are connected to a

third component, which generates a line. The values that are not specified, as in

the case of coordinate z point, receive a default value (in this case, z=0). When

the user changes the scrollbars position the points change place and, conse-

quently, the line follows, being represented in Rhinoceros desktop.

In Grasshopper it is also possible to create conditional structures with the use

of special components. Other components are capable of subdividing forms,

such as lines of surfaces, without the necessity of typing a looping. Some com-

CAD scripting and visual parametric modeling environments:
a comparison from a pedagogical point of view

MARIA GABRIELA CELANI E CARLOS EDUARDO VAZ

185

CADERNOS

18

ponents are able to generate random numbers or numeric sequences, such as

the Fibonacci series and the golden section. These tools may be used to imple-

ment design generative systems.

Despite the fact that a parameterized line generation be a simple case, it is

already possible to show how its use in a parametric modeling visual program-

ming environment is much more intuitive than a text code programming en-

vironment, since it does not require the introduction of a theoretical program-

ming knowledge.

Architectural Modeling Methods

According to Mitchell (1975), there are three methods to architectural represen-

tation and modeling: iconic, analogic and symbolic. The iconic models are the

most literal. Typical examples of their use in architecture are plans, elevations

and physical models. The production of these models involves scale (amplifi-

cations and reductions) and projection (2D and 3D) transformations. Mitchell

(1975, p.130) emphasizes that the role of this type of model in the generative

process is static: “a particular state of the system actually ‘looks like’ the po-

tential solution which it represents”. Through iconic models it is possible to

foresee how the building will look when it is ready.

In the analogic models, according to Mitchell (1975), a set of properties is used

to represent other set of properties of the object being designed.

Analogue generative systems often represent potential designs by settings of wheels,
dials, sliding columns, etc. The operations performed to change the state of the
system (that is, to describe a new potential design) are thus mechanical, for example,
the spinning of wheels, setting dials, sliding columns alongside each other.” (Mitchell,
1975, p. 131)

The representation of ‘Sagrada Familia’ produced by Gaudí with cables and

sand bags is an example of an analogic model. The cable symbolizes the its

tension vectors that represent, thus, analog forces of the structure to be built.

Through this model the architect was able to find the ideal form for the cathe-

dral’s arched structures.

Words, numbers, mathematic operators etc. represent the symbolic models. In

Architecture, the symbolic models are mainly used for the simulation and eval-

uation of structures, acoustics, lighting and thermal performance. Symbols are

typically displayed as mathematic formulas, tables, matrixes and algorithms.

The three representation methods described by Mitchell (1975) present differ-

ent abstraction levels: the iconic representations better approach reality, while

the symbolic ones are much more abstract. The analogic models are between

both. Although Mitchell did not specifically mention diagrams as a representa-

tion method, it is possible to consider them as a type of analogic representation,

CAD scripting and visual parametric modeling environments:
a comparison from a pedagogical point of view

MARIA GABRIELA CELANI E CARLOS EDUARDO VAZ

186

CADERNOS

18

since they allow easy manipulation and are among the concrete and abstract

representations. Table 1 categorizes AutoCAD/VBA and Rhinoceros/Grasshop-

per systems in terms of representation methods. It is possible to affirm that the

former operates as an iconic/symbolic model, while the latter operates as an

iconic/analogic representation.

TABLE 1 – Categorization of AutoCAD/VBA e Rhinoceros/Grasshopper systems

in terms of representation methods and abstraction levels.

Representation Method Abstraction Level Example 1 Example 2

Symbolic High VBAIDE

Analogic Medium Grasshopper

Iconic Low
AutoCAD

drawing editor
Rhinoceros

drawing editor

Visual Programming Environments
for Parametric Modeling and VPLs
(Visual Programming Languages

Visual programming environments for parametric modeling can be compared

to visual programming languages (VPLs), also called diagrammatic program-

ming languages. VPLs allow the user to create programs by the manipulation

of graphic components, instead of using code lines. In other words, they use

an analogic representation for the algorithms. Figure 3 shows an example of

interface for VPL.

Although parametric modeling visual programming environments are not ex-

actly a VPL, we may say that they have some of its characteristics, such as the

use of interface “box-and-wire”, the possibility of inserting codes in some of

its components, and the components hierarchical organization, which can be

grouped to form subunits.

Green and Petre (1996) studied the psychological aspects of VPLs by means of

comparison in terms of their cognitive dimensions. According to these authors,

the use of a visual environment to develop programs is easier for many reasons:

Source: the author

CAD scripting and visual parametric modeling environments:
a comparison from a pedagogical point of view

MARIA GABRIELA CELANI E CARLOS EDUARDO VAZ

187

CADERNOS

18

There are fewer syntactic planning goals to be met, such as paired delimiters,
discontinuous constructs, separators, or initializations of variables; higher-level
operators reduce the need for awkward combinations of primitives; and the order of
activity is freer, so that programmers can proceed as seems best in putting the pieces
of a program together (Green e Petre, 1996, p.40).

Similarly, it is not necessary to define variables in the parametric modeling vi-

sual programming tools; instead simply dragging a parameter and attributing

values to it is enough. Besides, it is not essential to plan the order of actions e

there are no syntactic rules. Even when a code in VBScript is used, it is restrict

to a specific component, thus the possible errors are easily located.

Based in empirical studies on the VPLs use, authors such as Green and Navarro

(apud Green and Petre, 1996) concluded that the resulting spatial reasoning of

the visual diagrams manipulation works as a support to the elaboration of ab-

stract ideas when a code is being developed. Analogically, visual programming

environments for parametric modeling can be helpful with the organization

of ideas when we plan a spatial composition, without the need of following a

linear path.

Regarding the developing code assessment, Green and Petre (1996) affirm that:

The less experienced the programmer, the smaller the amount that is produced before
it must be evaluated. Novices need ‘progressive evaluation’, an environment where
it is easy to check a program fragment before adding to it. (Green e Petre, 1996, p.8)

In other words, non-experienced programmers need to test the code along each

step of the code development. In the visual programming tools for parametric

modeling, the user can visualize, in real time, the result of the code changes

FIGURE 3

 Quartz Composer,
a VPL based on
interface “box-

and-wire”.

Source: Available
in Wikipedia.

CAD scripting and visual parametric modeling environments:
a comparison from a pedagogical point of view

MARIA GABRIELA CELANI E CARLOS EDUARDO VAZ

188

CADERNOS

18

in the window that shows the geometric model. Besides, in Grasshopper, when

the user makes an incorrect connection between two components, these be-

come automatically red. In the symbolic languages users only notice the errors

when trying to execute the code. Although VBAIDE identifies the majority of the

errors and has debug resources, such as flags, and variable watches, identifying

certain syntactic errors may take some time. Most students have difficulties in

the use of these tools, because their inexperience makes the task of identifying

and fixing errors very difficult.

Case Study

Both AutoCAD/VBA and Rhinoceros/Grasshopper systems were utilized in a

subject of the undergraduate course in Architecture and Urbanism at the Civil

Engineering School of State University of Campinas (FEC-Unicamp). “CAD in the

Creative Process” is a semester long subject and classes meet once a week for

two hours. The classes normally have thirty students. The topics addressed are:

•	 Computer-aided architectural design – history and definitions;

•	 Architectural forms generation strategies: symmetry, parameterization,

casualty, recursion and substitution (fractals), design based in rules

(form grammaticism), performance-based scripts, algorithms and proj-

ects. Each of the themes are followed by exercise that uses a pre-defined

code;

•	 A generative design exercise that must be done using the computational

tool. Normally only VBA to AutoCAD is used, but in this case, both VBA

and Grasshopper were used by students;

In both cases, only controls, procedures and simples math operators were in-

troduced to students, to allow the development of experiences with parametric

forms. Conditional structures or looping were not taught in the course. The first

phase involved the use of VBA for developing a simple abstract composition.

The second’s objective was the preparation of a cover for the campus access

gate, using Grasshopper as a computational tool.

The subject’s dynamic is based in the introduction of each computational

concept applied to the project, followed by a short exercise and design ref-

erences research, related to this concept. For example, in the class that ad-

dressed recursion and substitution, students prepared compositions using a

VBA routine. Afterward, students sought for examples of these concepts ap-

plication in Architecture.

The introduction to VBA was given in only one class and to Rhinoceros and

Grasshopper in two. Then, a two weeks time spam was given to students to

develop a small exercise using each of the tools. The analysis of the results was

CAD scripting and visual parametric modeling environments:
a comparison from a pedagogical point of view

MARIA GABRIELA CELANI E CARLOS EDUARDO VAZ

189

CADERNOS

18

FIGURE 4

Results of the
firt exercise.

Source: the
authors.

done with the result obtained by students and through a short text on the use

of CAD tools in the creative process. The students’ opinions were compared to

the previous years students’, when only the textual programming language had

been used. Figures 4 and 5 show some of the results obtained by students in

exercises with VBA and Grasshopper.

Regarding the learning curve, the total consultations for students during the

second exercise was much lower than in the first one, meaning that students

had less doubts and were more prepared to solve the problems on their own.

These students had already learned to use the AutoCAD software in a previous

semester subject, but had no experience in Rhinoceros. Even though, they were

so excited with the parametric modeling visual programming environment

that rapidly learned to use the new CAD software.

In the first exercise the students developed simple routines from the exam-

ples presented, copying part of them and changing variables that produced the

parametric variations. In the second exercise the results obtained were much

above expectation. Some students studied tutorials in the Internet and devel-

oped very complex compositions. The results show that students were excited

and generated forms much more sophisticated with the use of the visual pro-

gramming environment for modeling than with the script language.

In exercise 1, most of the students used straight lines but one that already had

knowledge in VBA and developed a spiral based in Fibonacci series. In exercise

2, the majority of students used organic forms, which probably, they would not

be able to create in AutoCAD.

A comparison between texts produced by 2010 class and the other year’s stu-

dents on the computational concepts applied to Architecture show that stu-

CAD scripting and visual parametric modeling environments:
a comparison from a pedagogical point of view

MARIA GABRIELA CELANI E CARLOS EDUARDO VAZ

190

CADERNOS

18

dents developed a better understanding on use of generative design strategies

and on the computational tools to explore design solutions. In previous years,

students frequently mentioned that it was interesting to implement generative

systems to the project, but that they would not do it professionally. After using

Grasshopper, students recognized in the parametric modeling an architectural

reasoning and something they would enjoy using in the future.

FIGURE 5

Results obtained with
Grasshopper.

Source: the authors.

Discussions

Alexander (1971), based on the graph and groups theory, and Eisenman (1963),

inspired by Deleuze and Derrida’s deconstruction, used diagrams to represent

design projects. According to Somol (1999), in the second half of the 20th cen-

tury, the diagram became a fundamental technique and procedure for the de-

sign knowledge, as well as a tool for the production and representation of the

architectural discourse (Figure 6). The analogic models developed on Grasshop-

per canvas can be understood as design diagrams, which require certain level of

abstraction, but are not too distant from reality, such as the text programming

codes. Through exercises such as these ones, it becomes possible stimulating

students to rethink their design strategies and to start using computers as tools

that are actively helpful in the creative process. A parametric modeling visual

programming environment can be a good start to achieve this objective.

CAD scripting and visual parametric modeling environments:
a comparison from a pedagogical point of view

MARIA GABRIELA CELANI E CARLOS EDUARDO VAZ

191

CADERNOS

18

Conclusions and Future Unfolding

It is possible to conclude that parametric modeling visual programming en-

vironments allow the implementation of generative design strategies in a

relatively simple way. These environments can be seen as an opportunity to

introduce computational concepts applied to Architecture to students that

have no knowledge in programming. However, the results do not exclude the

importance of introducing script languages in a more appropriate moment of

the course.

This research considered only the parametric modeling as a generative strategy.

Future researches may compare the implementation of other generative strate-

gies, in the two environments analyzed, such as systems based on rules. Figure 7

shows the implementation of the grammaticism of form in Hepplewhite style’s

chairs back supports, based on Knight’s (1980) work, in Grasshopper.

The diagram uses components with conditionals in order to apply different

rules to the composition. The scrollbars allow the interactive exploring of pa-

rameters. However, the diagram seems a little confusing, since in analogic

models, the higher its complexity, the larger the possibility of losing its intel-

ligibility – what is very important in abstract representations.

Through these kinds of discussions, it becomes possible encouraging students

to rethink their generative strategies and start utilizing computers as a tool to

amplify the search of design solutions possibilities.

FIGURE 6

 Transformation
diagrams for House

II, by Peter Eisenman,
and diagram of a

town, by Christopher
Alexander.

Source: COSTA, 1998.

CAD scripting and visual parametric modeling environments:
a comparison from a pedagogical point of view

MARIA GABRIELA CELANI E CARLOS EDUARDO VAZ

192

CADERNOS

18

Acknowledgements

The authors are thankful to students that took the subjects AU303 since 2004

for their enthusiasm and interest in the computational theories applied to

the design.

FIGURE 7

 An implementation of the
Hepplewhite’s chair seat

gramaticism in Grasshopper

Source: Carlos VAZ.

CAD scripting and visual parametric modeling environments:
a comparison from a pedagogical point of view

MARIA GABRIELA CELANI E CARLOS EDUARDO VAZ

193

CADERNOS

18

References

ALEXANDER, C. Notes on the synthesis of Form. Cambridge, Massachusetts:

Harvard University Press, 1964.

Bentley Institute. GenerativeComponents V8i Essentials: Course Guide. Bentley

Institute, 2008. Disponível em:<http://ftp2.bentley.com/dist/collateral/docs/mi-

crostation_generativecomponents/microstation_GC_v8i_essentials_book.pdf>.

Acesso em: 20 abr. 2011.

CELANI, G. CAD Criativo. Rio de Janeiro: Campus-Elsevier, 2003.

CELANI, M. G. C. Beyond analysis and representation in Cad: a new computa-

tional approach to design education, 2002, p., Tese de doutorado, Massachusettz

Institute of Technology

CELANI, M. G. C. Generative design in architecture: history and applications.

In: New Strategies, Contemporary Techniques, 2008, Barcelona. New Strategies,

Contemporary Techniques. Disponível em: < http://www.simae.net/en/index.

php >. Acesso em: 20 abr. 2011.

CELANI, M. G. C. Teaching CAD programming to architecture students. Revista

Gestão & Tecnologia de Projetos: v. 3, n. 2, p. 1-23, 2008b.

COATES, P.; THUM, R. Generative modeling: student workbook. Londres: Univer-

sity of East London, 1995.

EISENMAN, P. The formal basis of modern architecture. Tese de doutorado, Uni-

versidade de Cambridge, 1963, 378 p.

GREEN, T. R. G.; PETRE, M. Usability analysis of visual programming environ-

ments: A cognitive dimensions framework. Journal of Visual Languages and

Computing: v. 7, p. 131-174, 1996.

KNIGHT, T. W. The generation of Hepplewhite-style chair back designs. Environ-

ment and Planning B: Planning and Design, Londres: n. 7, p. 227-238, 1980.

Mark, E.; Martens, B.; Oxman, R. The Ideal Computer Curriculum. In: H.Penttila

(Ed.), Architectural Information Management, 19th eCAADe Conference Pro-

ceedings. Helsinki (Finlandia): Helsinki University of Technology, pp. 168-175,

2001.

MITCHELL, W. J.; LIGGET, R. S.; KVAN, T. The art of computer graphics program-

ming. Nova York: Van Nostrand Reinhold, 1987.

PAYNE, A.; ISSA, R. The Grasshopper Primer: for version 0.6.0007. 2009. Dis-

ponível em:< http://www.liftarchitects.com/journal/2009/3/25/the-grasshop-

per-primer-second-edition.html>. Acesso em: 20 abr. 2011.

CAD scripting and visual parametric modeling environments:
a comparison from a pedagogical point of view

MARIA GABRIELA CELANI E CARLOS EDUARDO VAZ

194

CADERNOS

18

CAD scripting and visual parametric modeling environments:
a comparison from a pedagogical point of view

MARIA GABRIELA CELANI E CARLOS EDUARDO VAZ

ROBBINS, E. Why Architects Draw. Cambridge: The MIT Press, 1997.

SCHMITT, G. Microcomputer Aided Design for Architects and Designers. Nova

York: John Wiley & Sons, 1988.

SOMOL, R. E. Dummy Text, or The Diagrammatic Basis of Contemporary Archi-

tecture. Risco: v. 5, n.1, p. 168-178, 2007.

TERZIDIS, K. Algorithmic architecture. Cambridge: Architectural Press, 2006.

WIKIPEDIA. Quartz Composer. Disponível em:< http://en.wikipedia.org/wiki/

Quartz_Composer>. Acesso em: 20 abr. 2011.

